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Abstract

Bagasse, the fibrous matter that remains after the extraction process from
sugarcane, is still a valuable resource to the Sugar Milling Industry, since it
may be used to generate electricity or as a building material. However, it
is vulnerable to spontaneous combustion during storage. The Sugar Milling
Research Institute in KwaZulu Natal is interested in finding methods and
conditions that allow the survival of bagasse stockpiles without combustion.
Provided a reasonable set of storage guidelines can be defined the SMRI can
then investigate strategies for bagasse storage and subsequent use for electric-
ity generation.

1 Introduction

Sugar milling is an important industry in South Africa which combines the agri-
cultural aspect of growing sugar cane with the manufacture of refined sugar. The
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fibre residue resulting from the process of extracting sugar from the shredded cane
is known as bagasse. In other countries the bagasse has been used as a fuel in the
factory boilers for co-generation of steam and electricity. This obviously reduces
costs and so improves competitiveness. Unfortunately, it is well-known that large
piles of bagasse are prone to spontaneous combustion.

The Sugar Milling Research Institute (SMRI) situated in KwaZulu Natal is in-
terested in storing bagasse for use in their furnaces, but due to obvious safety issues
they would first like to understand the processes behind spontaneous combustion.
This was the problem presented at the Mathematics in Industry Study Group meet-
ing in 2016 (MISG2016) at the University of the Witwatersrand. Specifically three
issues were raised by the institute which are critical in finding safe methods for
bagasse storage and avoiding spontaneous combustion:

(i) Calculating the maximum height of the bagasse heap to avoid spontaneous
combustion,

(ii) Investigating whether or not there are advantages in adjusting the moisture
content,

(iii) Investigating whether or not there is an advantage in pelletizing the bagasse.

Spontaneous combustion has been observed in a number of other industries and
consequently there is a rich literature on the topic. For our study we focussed
on a model developed by Gray et al. [1, 2, 3, 4]. In the following section this
model will be explained and placed in the context of the problem presented to us by
SMRI. Section 3 focusses on a coupled steady state problem which when analysed
gives information that leads to the detailed process of non-dimensionalising of the
governing equations in Section 4. The resulting governing equations are significantly
simplified. More accurate models are discussed in Section 5. We then give concluding
remarks in Section 6.

2 Mathematical model

The first recorded spontaneous combustion incident took place in the Mourilyan
stockpile in 1983. This incident motivated experiments, some of which were report-
ed in [1, 2] in 1984, that attempted to find out why bagasse would spontaneously
combust and which conditions led to this phenomenon. Following two more bagasse
ignition incidents between 1983 and 1988, Dixon [3] investigated further the pro-
cess of spontaneous combustion of bagasse and found that moisture content in the
bagasse plays a very significant role. Recommendations were therefore made from
the latter study that the effect of moisture content should never be neglected in
the mathematical modelling of the spontaneous combustion of bagasse stockpiles.
Following these recommendations, Gray et al. [4] considered a mathematical model
of the process of spontaneous combustion in bagasse which took the effect of mois-
ture content into account. This paper laid the groundwork for the discussions and
mathematical models analysed during MISG2016. In the study, Gray considered a
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one dimensional model where the temperature U , the molar concentration of liquid
water X, the water vapour Y and the oxygen content W all depend on the time t
and the distance x measured from the bottow to the top of the stockpile. The model
is given by the following four equations:

(ρbcb +mwXcw)
∂U

∂t
= κ∇2U +QρbZW exp(−E/RU) (1)

+QwρbZwXW exp(−Ew/RU)f(U) + Lv[ZcY − ZeX exp(−Lv/RU)],

∂Y

∂t
= DY∇2Y + ZeX exp(−Lv/RU)− ZcY, (2)

∂X

∂t
= −ZeX exp(−Lv/RU) + ZcY, (3)

∂W

∂t
= Dw∇2W − FρbZW exp(−E/RU)− FρbZwXW exp(−Ew/RU)f(U), (4)

where the function

f(U) =

[
tanh[0.6(58− U + 273)] + 1

2

]
, (5)

was obtained from experiments [5] and the values for all the remaining unknown
parameters in (1) to (4) with their respective units are given by Gray [4] and illus-
trated in Table 1. The nonlinear diffusion equation for temperature given by (1)
involves a number of source terms. The first two sources show that heat generation
from the dry and wet reactions follow the standard Arrhenius form. The final term
shows that heat release or absorption, due to latent heat, is proportional to the rate
of change of liquid. The mass balance equations (2) and (3) describe the variation of
moisture, either as liquid or vapour, in the bagasse. Equation (2) shows that vapour
can diffuse through the bagasse. The amount of vapour increases due to condensa-
tion of water and decreases due to evaporation. The liquid water, equation (3), is
not free to diffuse since it will attach to the bagasse or accumulate at the bottom of
the pile, so it simply interchanges mass with the vapour phase.

At temperatures less than 58◦C, oxygen levels in the bagasse are low and they
rapidly increase for temperatures greater than 58◦C as shown in (4) and (5).

The function f(U) in (5) acts as a switch. Below U = 58 + 273K, f(U) is ap-
proximately 1; there is a rapid transition to 0 as U approaches 58 + 273K and so
we may assume that (5) takes the form

f(U) =

{
1, U < 58 + 273K,

0, U ≥ 58 + 273K.
(6)

For temperatures U < 58◦C the overall reaction is driven by the moisture dependent
reaction, whereas for temperatures U ≥ 58◦C the moisture dependent effect vanishes
and the overall reaction is then driven by oxidation.
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Table 1: Nomenclature and values of various constants with their respective units,
taken from [4]. The temperature T in this table is replaced by the symbol U in the
present work.
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While Gray considered the Newton cooling boundary condition on both ends of
the bagasse, such that a symmetrical domain is achieved, we only consider the same
boundary condition at the top surface, x = L,

−κ∂U
∂x

= h(U −Ua), −DY
∂Y

∂x
= hY (Y −Ya), −DW

∂W

∂x
= hW (W −Wa) . (7)

The bagasse is placed on a flat surface with negligible conductive properties. We
therefore assume that the bottom is completely insulated such that the no flow
condition (of heat or material) at x = 0 is imposed:

∂U

∂x
= 0,

∂Y

∂x
= 0,

∂W

∂x
= 0 . (8)

The initial conditions are

U(x, 0) = U0(x), Y (x, 0) = Y0(x), X(x, 0) = X0(x), W (x, 0) = W0(x). (9)

In this work, we focus on situations close to ignition, so “investigating the worst
case scenario”.

3 Steady state problem

We begin the analysis by considering the steady-state equations. This is useful not
only for understanding the large time behaviour, but also to determine the appro-
priate scaling for the non-dimensionalisation in order to examine the bifurcation
diagram.

First consider the steady equations for X and Y :

0 = DY
∂2Y

∂x2
+ ZeX exp

(
− Lv

RU

)
− ZcY, (10)

0 = −ZeX exp

(
− Lv

RU

)
+ ZcY. (11)

Adding the two equations determines Yxx = 0 and, after applying the boundary
conditions we find Ys = Ya (where the subscript s denotes steady-state). Using
equation (11) we may then write down an expression for the liquid concentration as

Xs =
ZcYa
Ze

exp

(
Lv

RU

)
. (12)

Note that the steady-state for X varies with position, x, due to the temperature in
the exponential.

The terms in equation (11) represent conservation of liquid and vapour. The
latent heat term in equation (1) represents the energy resulting from the liquid
vaporising and the vapour condensing. In the steady-state, according to equation
(11), these terms balance and so the heat equation (1) reduces to

0 = κ
∂2U

∂x2
+QρbZW exp

(
− E

RU

)
+QwρbZwXsW exp

(
−Ew

RU

)
f(U) . (13)
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The oxygen equation is

0 = DW
∂2W

∂x2
− FρbZW exp

(
− E

RU

)
− FρbZwXW exp

(
−Ew

RU

)
f(U) . (14)

Our interest lies in the situation where spontaneous combustion is likely so we
will focus on the high temperature regime (everywhere above 58◦C), consequently we
may neglect the terms involving f(U). The above equations may then be combined
to give

κ

Q

∂2U

∂x2
+
DW

F

∂2W

∂x2
= 0. (15)

After integrating and applying the boundary conditions at x = 0 we find

κ

Q
U +

DW

F
W = C0. (16)

This shows that there is linear relation between temperature and oxygen content,
that is, as the temperature increases, the oxygen concentration decreases and vice-
versa.

In the following section we will non-dimensionalise the model using the steady-
state solutions as a guide. First, we have obtained Ys = Ya, which will be our
vapour scale. The liquid steady-state is dependent on x. Since we are interested in
the ignition of the bagasse a sensible X scale is

∆X =
ZcYa
Ze

exp

(
Lv

RUi

)
, (17)

where Ui is the ignition temperature.

4 Mathematical model in dimensionless form

In this section, we non-dimensionalise the governing equations (1) to (4) with their
corresponding boundary conditions (7) and (8) and the initial conditions (9). We
first introduce the dimensionless variables

U =
U − Ua

∆U
, x =

x

L
, t =

t

∆t
, Y =

Y

∆Y
, W =

W

∆W
, X =

X

∆X
. (18)

The characteristic temperature is chosen to be

∆U = Ui − Ua, (19)

where Ui is the ignition temperature and Ua is the ambient temperature, and the
characteristic height of the stockpile is L. Balancing the first and second terms of
equation (1) gives the diffusion time scale

∆t =
L2(ρbcb +mwcw∆X)

κ
=

L2

DU

, DU =
κ

(ρbcb +mwcw∆X)
. (20)
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We choose the characteristic vapour scale to be the vapour concentration at ambient
conditions ∆Y = Ya and the characteristic oxygen content to be the oxygen at
ambient conditions ∆W = Wa. The characteristic liquid content ∆X is given by
equation (17).

Expressing (3) in dimensionless parameters gives

∆X

∆t

∂X

∂t
= −Ze∆XX exp

[
− Lv

R(Ua + ∆UU)

]
+ Zc∆Y Y . (21)

This may be rewritten as

1

∆tZe

exp

(
Lv

RUi

)
∂X

∂t
= −X exp

(
Lv

RUi

− Lv

R[Ua + ∆UU ]

)
+ Y . (22)

Using the values of Table 1 we find that the coefficient of the left side of (22) is of
the order O(10−5) and so we may neglect the time derivative. This fits with the
observation that the moisture reaction is quite rapid (on the order of days) while the
entire storage time for bagasse may be around 9 months. This is verified by the time
evolution of temperature obtained from experiments in [5] which show that there is
a sharp increase in temperature for the first ten days after which the temperature
stabilizes over approximately the next 200 days. Following a gradual temperature
drop, stability is reached again after 350 days. This observation allows us to express
X in terms of U and Y

X = exp

(
− αLv(U − 1)

1 + ∆U
Ui

(U − 1)

)
Y , (23)

where

α
Lv

=
Lv∆U

RU2
i

= O(1). (24)

As with the steady-state analysis it follows that the last two terms in the heat and
vapour equations (1) and (2) vanish so that they reduce to

(ρbcb +mwXcw)
∂U

∂t
= κ

∂2U

∂x2
+QρbZW exp(−E/RU)

+QwρbZwXW exp(−Ew/RU)f(U), (25)

∂Y

∂t
= DY

∂2Y

∂x2
. (26)

In dimensionless form these two equations are

(β1 + β2X)
∂U

∂t
=
∂2U

∂x2 + AEW exp

[
α

E
(U − 1)

1 + ∆U
Ui

(U − 1)

]

+ AEwXW exp

[
α

Ew
(U − 1)

1 + ∆U
Ui

(U − 1)

]
f(U), (27)

κY
∂Y

∂t
=
∂2Y

∂x2 , (28)
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where

β1 =
ρbcbL

2

κ∆t
= O(1), β2 =

mwcw∆XL2

κ∆t
= O(10−1), (29)

A
E

=
QρbZ∆WL2

κ∆U
exp

(
− E

RUi

)
= O(1), (30)

A
Ew =

QwρbZw∆X∆WL2

κ∆U
exp

(
− Ew

RUi

)
= O(102), (31)

α
E

=
E∆U

RU2
i

= O(1), α
Ew

=
Ew∆U

RU2
i

= O(1), κY =
L2

∆tDY

= O(10−1).

(32)

The dimensionless form of the oxygen equation (4) is

κW
∂W

∂t
=
∂2W

∂x2 −BEW exp

[
α

E
(U − 1)

1 + ∆U
Ui

(U − 1)

]

−BEwXW exp

[
α

Ew
(U − 1)

1 + ∆U
Ui

(U − 1)

]
f(U), (33)

where

κW =
L2

∆tDW

= O(10−1), B
E

=
FρbZL

2

DW

exp

(
− E

RUi

)
= O(1), (34)

BEw =
FρbZw∆XL2

Dw

exp

(
− Ew

RUi

)
= O(10). (35)

The boundary conditions (7) and (8) in dimensionless variables are

x = 1 : −∂U
∂x

= γU, −∂Y
∂x

= γY (Y − 1), −∂W
∂x

= γW (W − 1), (36)

x = 0 :
∂U

∂x
= 0,

∂Y

∂x
= 0,

∂W

∂x
= 0, (37)

where

γ =
hL

k
, γY =

hYL

DY

, γW =
hWL

DW

. (38)

Note that γ = O(10) and γY = γW = O(105) so we may simplify the last two
boundary conditions in (36) to Y = W = 1 at x = 1. The initial conditions are

U = U0, Y = Y 0, W = W 0, at t = 0, (39)

where

U0 =
U0 − Ua

∆U
, Y 0 =

Y0

∆Y
, W 0 =

W0

∆W
. (40)
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Figure 1: Surface plot of the oxygen, W .

0
0.5

1
1.5

0

5

10

x 10
5

30

40

50

60

70

Distance x

U(x,t)

Time t

Figure 2: Surface plot of the temperature, U , with L = 1.2.
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Figure 3: Surface plot of the temperature, U , with L = 1.6.

In Figures 1-3 we present results from this model. The axes are dimensional.
The variation of the oxygen content in a 1.2m pile is shown in Figure 1. Initially the
concentration is the same as the value of the air, namely 8.04 mol/m3. It remains
at this value at the top of the pile, however as time increases the value decreases
elsewhere, with a minimum at the bottom of the pile, where it is hardest for the
oxygen to diffuse. The corresponding temperature plot is shown in Figure 2. The
initial condition on temperature is constant and set at a high value, 60◦C, to focus
on the dry reaction leading to ignition. After a brief period, where the temperature
rises slightly near the bottom of the pile the temperature reduces everywhere and
it is clear that ignition will never occur. The behaviour is consistent with the
experiments of [5] who report a sharp rise in temperature for the first 10 days,
followed by a stable period lasting approximately 200 days. In Figure 3 we show
the temperature for a slightly larger pile, 1.6m high. At early times this shows
a similar behaviour to the previous case, with an initial small rise in temperature
near the bottom of the pile, this is followed by an almost steady-state, where the
temperature is relatively independent of time. On the order of 15×106s, or 10 days,
the temperature starts to rise in a manner where ignition is inevitable: dry bagasse
ignites at approximately 94◦C. The maximum temperature in this simulation is
around 110◦C. We may therefore conclude that given the ambient conditions used
in the simulations bagasse piles must be kept below 1.6m.

5 A reduced model

As noted in a previous section, the liquid water content is well approximated by
(23). This will lead to errors of order 10−3%, hence it seems reasonable to replace
X using this expression. In general we should therefore describe the problem using
three coupled equations, namely equations (27), (28), (33).
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A further reduction was also examined during the meeting. This was based
on the observation that the coefficients κW , κY are order 10−1, so neglecting the
corresponding time derivatives may lead to errors up to 10%. A rough approximation
to the solution is then given by equation (23) linked to the pseudo-steady solution
Y = 1 and

(β1 + β2X)
∂U

∂t
=
∂2U

∂x2 + AEW exp

(
αE(U − 1)

1 + ∆U
Ui

(U − 1)

)

+ AEwXW exp

(
αEw(U − 1)

1 + ∆U
Ui

(U − 1)

)
f(U), (41)

0 =
∂2W

∂x2 −BEW exp

(
αE(U − 1)

1 + ∆U
Ui

(U − 1)

)

−BEwXW exp

(
αEw(U − 1)

1 + ∆U
Ui

(U − 1)

)
f(U) . (42)

This reduced model may be simpler to solve than that of the previous section,
however we did not have time to investigate it further.

6 Conclusions

A one dimensional model describing the dynamics in the bagasse stockpile has been
considered, our primary source was the papers of Gray et al who published a large
body of work on spontaneous combustion in bagasse and other materials. The model
we employed incorporated the effects of moisture, liquid water and oxygen content
on the temperature since the literature indicated these were the dominant effects.
For temperatures U < 58+273K, the reaction is dominated by the moisture content
and is quite rapid (on the order of days) while for temperatures U ≥ 58 + 273K,
the reaction is dominated by the oxygen content in the bagasse and the reaction is
very slow (on the order of months).

The non-dimensionalisation showed that the liquid water content is always close
to its steady-state value (with errors of the order 10−3%). This observation allows the
removal of various terms in the governing equations and so simplifies the mathemat-
ical model. The simplified system, consisting of three partial differential equations
was solved numerically. The results were consistent with behaviour reported from
experiments, with an initial rise in temperature, followed by a relatively stable pe-
riod. We carried out two simulations, the first on a 1.2m pile which indicated that
ignition would never occur, the second, on a 1.6m pile, led to ignition.

At the start of the study group we were asked specific questions. Given the time
constraints of the meeting it was impossible to reach the desired goals, which could
clearly be the subject of a continued, more detailed study. The main achievement
of the meeting was to develop a mathematical model that leads to realistic results.
This will be invaluable for any continuation of the project. A specific question posed
was to provide a set of simple guidelines for safe bagasse storage. A mathematical
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model has now been identified which can be used to determine these guidelines. A
second question was whether there are advantages in adjusting the moisture con-
tent of the pile. The model showed that there is a given height above which the
pile will ignite and this height varies with ambient conditions and moisture content.
The moisture content is particularly important, since water is required for a num-
ber of exothermic reactions in the model. Our preliminary results showed that an
increase in moisture content in the bagasse can cause a previously stable stockpile
to spontaneously combust. This result was also observed in the literature. This
suggests that the moisture content of the bagasse should be kept to a minimum, but
of course there are costs associated with the drying process. We also found that for
any ambient condition, a bagasse stockpile can combust if the height is sufficiently
large. Therefore the risk of combustion is directly proportional to the height of the
stockpiles.

Further suggested work includes:

• Finalise the one-dimensional model, by examining it in more detail, with more
simulations to determine suitable stockpile heights for given ambient condi-
tions and also the effect of sudden changes to these conditions for example
through rainfall.

• The model of Gray et al should be examined in detail, to verify all terms
are correct. Should height variation of parameters be included, i.e. density
increasing with depth. The boundary conditions should also be examined, for
example is it realistic that no heat is lost at the substrate? Can the storage
environment be adapted to lessen the risk of fire?

• The model could easily be extended to two dimensions, which would then allow
lateral movement of heat, possibly leading to further cooling.

In summary we should point out that the model analysed during the week appears to
be an excellent starting point in the study of bagasse storage but for such an impor-
tant issue it is quite clear that a more detailed (and time-consuming) investigation
must be undertaken.
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