

MISG2021

Group 3

Problem Statement

Mathematical Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks MISG 2021 Progress Report Masks and the spread of droplets and airborne virons.

D. P. Mason, N. Fowkes, T. Myers, N. Hale, I. Griffiths,M. Khalique, N. Modhien, H. Zha, E. Mubai, K. Born,T. Magodi, H. Bhana, F. Rakotoniaina, P. Chiwira

February 6, 2021

MISE South Africa 2020 Table of Contents

MISG2021

Group 3

Problem Statement

Mathematical Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks

1 Problem Statement

2 Mathematical Models

3 Rigid Filtration Problem

MISE South Mirce 2020 MISG2021

Group 3

Problem Statement

Mathematical Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks

1 Problem Statement

Mathematical Models

3 Rigid Filtration Problem

MISG South Africa 2020 Problem Statement

MISG2021

Group 3

Problem Statement

Mathematical Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks Dr. Fauci recently advised that, "If you have a physical covering with one layer, you put another layer on, it just makes common sense that it likely would be more effective. That's the reason why you see people either double masking or doing a version of an N-95."

To test this, we wish to construct a model of two masks (filters).

MISE South Africa 2021 Table of Contents

MISG2021

Group 3

Problem Statement

Mathematical Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks

Problem Statement

2 Mathematical Models

3 Rigid Filtration Problem

Mathematical Models MISG South Africa 2021 **MISG2021** Group 3 Mathematical **Rigid Filtration Problem** Models **Droplet Trajectories** Elastic Mask Problem Mask Design Problem

MISG South Africe 2027 Table of Contents

MISG2021

Group 3

Problem Statement

Mathematical Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks

Problem Statement

Mathematical Models

3 Rigid Filtration Problem

MISC South Africa 2021	Rigid Filtration Model
MISG2021 Group 3	
Problem Statement Mathematical Models	Properties of the Model
Rigid Filtration Problem Droplet trajectories Two Elastic Masks	 Flow with adsorption in one-dimension Masks are rigid Assume masks are in perfect contact

MISG2021

Group 3

Problem Statement

Mathematica Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks

$$\frac{\partial c}{\partial t} - \frac{\partial}{\partial x} \left[D \frac{\partial^2 c}{\partial x^2} - (uc) \right] = -\gamma (q^* - q), \tag{1}$$

where c is the average concentration of water droplets in the porous media, q is the amount adsorbed onto the filter, q^* is the saturation value, γ is the adsorption rate, and D is the diffusion coefficient. D depends on the porosity, permeability, air speed, and droplet size.

MISG South Africa 2021 Steady-state

MISG2021

Group 3

Problem Statement

Mathematica Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks

$$\frac{\partial}{\partial x} \left[D \frac{\partial c}{\partial x} - (uc) \right] = \gamma(q^* - q)$$
(2)

The Langmuir isotherm

$$q = \frac{kc}{1+kc} \,. \tag{3}$$

 $kc \ll 1$ permits a linear, constant coefficients governing equation.

MISG2021

Group 3

Problem Statement

Mathematica Models

Rigid Filtration Problem

Droplet trajectorie

Two Elastic Masks

At the inlet there is continuity of flux

$$uc|_{x=0^{-}} = \left(uc - D\frac{\partial c}{\partial x}\right)\Big|_{x=0^{+}}.$$
 (4)

At the outlet x = L

$$\left. \frac{\partial c}{\partial x} \right|_{x=L} = 0.$$
 (5)

In the case of two masks in perfect contact, at the interface (call this L_1 and outlet at L_2) we apply two governing equations with different values for D, γ , c^*

At the interface we impose continuity of concentration and flux

$$[c_i]_{x=L_1} = 0, \qquad \left[uc_i - D_i \frac{\partial c_i}{\partial x} \right]_{x=L_1} = 0.$$
 (6)

MISG South Africa 2021

Velocity

MISG2021

Group 3

Problem Statement

Mathematical Models

Rigid Filtration Problem

Droplet trajectories

Two Elasti Masks

$$u = -\frac{k}{\mu}\frac{\partial p}{\partial x} = -\frac{k}{\mu}\frac{\Delta p}{L}$$
(7)

k is the permeability of the mask, μ the dynamic viscosity of the air and Δp the pressure drop across the mask. Two layers $-L_1, L_2$, permeability k_1, k_2 , driven by a pressure drop $\Delta p = p_2 - p_0 < 0$ At the interface we denote the unknown pressure as p_1 . Mass

At the interface we denote the unknown pressure as p_1 . Ma conservation indicates

$$u = -\frac{k_1}{\mu} \left(\frac{p_1 - p_0}{L_1} \right) = -\frac{k_2}{\mu} \left(\frac{p_2 - p_1}{L_2} \right)$$
(8)

Hence ...

MISG South Africa 2021 Ease of breathing

MISG2021

Group 3

Problem Statement

Mathematica Models

Rigid Filtration Problem

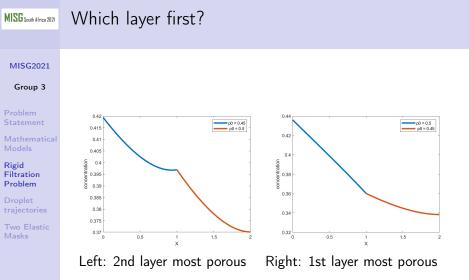
Droplet trajectorie

Two Elastic Masks

$$u = -\frac{k_1 k_2}{\mu} \left(\frac{\Delta p}{k_1 L_2 + k_2 L_1} \right)$$
(9)

In terms of ease of breathing it doesn't matter where the layer is k, L are interchangeable.

But the layer position does affect the outlet concentration ...



MISC South Africa 2021	Table of Contents
MISG2021	
Group 3	
Problem Statement	1 Problem Statement
Mathematical Models	2 Mathematical Mode
Rigid Filtration Problem Droplet	3 Rigid Filtration Prob
trajectories Two Elastic	

MISE 3 out Africa 2021 Where does my spit go?

MISG2021

Group 3

Problem Statement

Mathematical Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks Consider mouth some distance from an impermeable plate ... Steady-state Navier–Stokes equations

$$Re\left(u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial y}\right) = -\frac{\partial p}{\partial x} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$
(10)
$$Re\left(u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) = -\frac{\partial p}{\partial y} + \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}.$$
(11)

Similarity variable $\eta = \sqrt{Rey}$ and stream function

$$\psi = \frac{x}{\sqrt{Re}} f(\eta) \tag{12}$$

such that $u = \psi_y$, $v = -\psi_x$.

MISG South Africa 2021 Missing spit!

MISG2021

Group 3

Problem Statement

Mathematica Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks

$$xRe\left[f_{\eta}^{2} - ff_{\eta\eta}\right] = -\frac{\partial p}{\partial x} + xRef_{\eta\eta\eta}$$
(13)
$$Re\left[\frac{1}{\sqrt{Re}}ff_{\eta}\right] = -\sqrt{Re}p_{\eta} - \sqrt{Re}f_{\eta\eta}$$
(14)

To remove the x dependence in the first equation

$$p = \pm Re\frac{x^2}{2} + g(\eta). \tag{15}$$

The second equation integrates immediately

$$\frac{f^2}{2} = -p - f_{\eta} + h(x)$$
(16)

Comparison of the two expressions for p leads to

$$p - p_0 = -\left[Re\frac{x^2}{2} + f_\eta + \frac{f^2}{2}\right]$$
(17)

where we have chosen the negative branch for the x^2 term

MISG South Africa 2021

Airflow

MISG2021

ODE for $f(\eta)$

This is subject to

Group 3

 $f_{\eta\eta\eta} + ff_{\eta\eta} - f_{\eta}^2 + 1 = 0 \tag{18}$

(19)

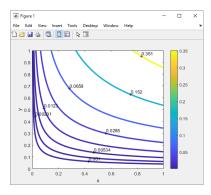
Problem Statement

Mathematica Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks



 $f(0) = f_{\eta}(0) = 0, \qquad f_{\eta}(\infty) = 1$

MISG South Africa 2021 Back to spit

MISG2021

Droplet motion

Group 3

Problem Statement

Mathematica Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks

$$St \underline{x}_{tt} = \frac{C_D}{2} (\underline{u} - \underline{x}_t) |\underline{u} - \underline{x}_t|$$
(20)

The drag coefficient

$$C_D = 2 \left[1.849 R e_p^{-0.31} + 0.293 R e_p^{0.06} \right]^{3.45}$$
(21)

The Stokes and Reynolds' numbers are

$$St = \frac{4}{3} \frac{\rho_p}{\rho_f} \frac{a}{L} \qquad Re_p = 2\epsilon Re \left| \underline{u} - \underline{x}_t \right| \qquad Re = \frac{\rho_f UL}{\mu} \qquad (22)$$

Release different size droplets from $(x_0, 1)$ with velocity $u_0 = (0, -1)$ and determine whether they hit the mask (i.e. reach y = 0) or move to the side for a sufficient distance to escape the mask.

MISG South Africa 2021

Cool video

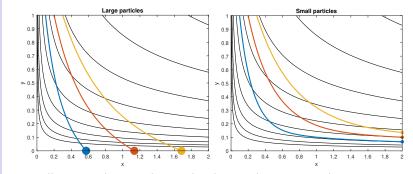
Problem Statement

Mathematica Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks



Smaller particles are diverted, whereas larger particles are more likely to impact at the mask surface.

Need to include permeability effect - obviously higher permeability implies more droplets entering - similar to moving mask up into streamlines

Recommendations

MISG2021

Group 3

Problem Statement

Mathematical Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks If we have two masks in intimate contact (or one mask made of two layers), with different properties then
1) It makes no difference for the ease of breathing which is first.
2) It does make a difference to the removal of droplets.
But ... if two masks really need to investigate flow in air gap Does more leak out of the side than enter the second layer?
(We ran out of time on this, but seems important)

Study of droplet motion indicates higher permeability gets droplets into mask

Put the most permeable part near the face!!!!

MISC South Africa 2021	Table of Contents
MISG2021 Group 3	
Problem Statement	1 Problem Statement
Mathematical Models	2 Mathematical Models
Rigid Filtration Problem Droplet trajectories	3 Rigid Filtration Prob
Two Elastic Masks	4 Droplet trajectories
	5 Two Elastic Masks

MISG South Africa 2021 Two Elastic Masks

MISG2021

Group 3

Problem Statement

Mathematical Models

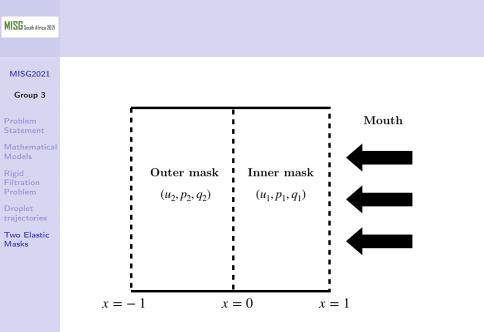
Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks How does having two masks with different material properties affect the flux through the masks? Design parameters are undeformed permeability, and response of permeability to deformation

Extend the work of Köry et al.

MISE South Africa 2021	Two Elastic Masks
MISG2021 Group 3	
Problem Statement Mathematical Models Rigid Filtration Problem Droplet trajectories Two Elastic Masks	Two masks No gap between them Laterally uniform, i.e. 1D sufficient Compressible, with small deformation assumed Permeabilities depend linearly on deformation Steady, i.e. poroelastic timescale « breathing/coughing timescale



MISC South Africa 2021 Governing equations

MISG2021

Group 3

Problem Statement

Mathematica Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks

linear Navier equation:

$$(\lambda_i + 2\mu_i)\frac{\mathrm{d}^2 u_i}{\mathrm{d}x^2} = \frac{\mathrm{d}p_i}{\mathrm{d}x}$$

for i = 1, 2. η_i =viscosity, λ_i, μ_i =effective elastic coefficients, κ_i =permeability

MISG South Africa 2021 Governing equations

MISG2021

Group 3

Problem Statement

Mathematica Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks linear Navier equation:

$$(\lambda_i + 2\mu_i)\frac{\mathrm{d}^2 u_i}{\mathrm{d}x^2} = \frac{\mathrm{d}p_i}{\mathrm{d}x}$$

Darcy's law:

$$q_i = \frac{\kappa_i}{\eta_i} \frac{\mathrm{d}p_i}{\mathrm{d}x}$$

for i = 1, 2. η_i =viscosity, λ_i, μ_i =effective elastic coefficients, κ_i =permeability

MISG South Africa 2021 Governing equations

MISG2021

Group 3

Problem

Mathematical Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks linear Navier equation:

$$(\lambda_i + 2\mu_i)\frac{\mathrm{d}^2 u_i}{\mathrm{d}x^2} = \frac{\mathrm{d}p_i}{\mathrm{d}x}$$

Darcy's law:

$$q_i = \frac{\kappa_i}{\eta_i} \frac{\mathrm{d}p_i}{\mathrm{d}x}$$

Continuity equation:

$$\frac{\mathrm{d}q_i}{\mathrm{d}x} = 0$$

for i = 1, 2. η_i =viscosity, λ_i, μ_i =effective elastic coefficients, κ_i =permeability

Permeability-deformation constitutive law

MISG2021

Group 3

Problem Statement

Mathematical Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks

undeformed permeability k_i permeability scales linearly with deformation gradient via α_i

$$\kappa_i = k_i \left(1 + \alpha_i \frac{\mathrm{d}u_i}{\mathrm{d}x} \right)$$

MISG South Africa 2021	Boundary conditions		
MISG2021			
Group 3	:		l
Problem Statement			
Mathematical Models			
Rigid Filtration Problem	$u_1 = 0 \qquad \qquad \frac{du_2}{dx} = p_1 = p^{out} \qquad \qquad p_2 = p_2 = 0$	= 0	1
Droplet trajectories	$u_1 = 0 \qquad \qquad \boxed{dx} = p_2 = p^{out}$	$= p^{in}$	1
Two Elastic Masks		1	i
		:	l
	i i		ļ

MISC South Africa 2021	Interface conditions
MISG2021	
Group 3	:
Problem Statement	
Mathematical Models	$u_1 = u_2$
Rigid Filtration Problem	$p_1 = p_2$
Droplet trajectories	$q_1 = q_2$ du_1 du_2
Two Elastic Masks	$(\lambda_1 + 2\mu_1)\frac{du_1}{dx} - p_1 = (\lambda_2 + 2\mu_2)\frac{du_2}{dx} - p_2$

Solutions

MISG2021

MISG South Africa 2021

Group 3

Problem Statement

Mathematica Models

Rigid Filtration Problem

Droplet trajectories

Two Elastic Masks Depend on values of λ_i, μ_i , etc.

$$u_i(x) = \pm \frac{1}{\lambda_i + 2\mu_i} \frac{(2A_i x - 2C_{1i})^{3/2}}{3A_i^2} + C_{3i}x + C_{4i}$$

$$p_i(x) = C_{2i} \pm \frac{(2A_i x - 2C_{1i})^{1/2}}{A_i}$$

Where $A_i = \frac{\kappa_i \alpha_i}{\eta_i q_i (\lambda_i + 2\mu_i)}$ and C_{ji} , j = 1, 2, 3, 4 are constants of integration to be determined from boundary and interface conditions. Considering limit of rigid mask, must choose plus sign.