Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References

Decision Support Tool for Optimal Beer Blending Presented by: Matthews Sejeso

John Atherfold, Krupa Prag, Fred de Villiers, Quinton Ndlovu, Michael Olusanya, Surafel Tilahun

12 January 2019

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Present	ation Overview				

1 Introduction

- 2 Problem Formulation
 - Given Data
 - Bounded- ϵ
 - Weighted Sum
- 3 Numerical Results
- 4 Conclusion
- 5 Further work

6 References

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Introductio	on				

- There is a decrease in the consumption of traditional beers, as a result of consumers seeking more adventurous tastes.
- Brewing companies are forced to propose more varieties of beers to suite various markets.
- Beer varieties are uniquely blended to obtain different types of beer blends with each satisfying different attributes at specific levels.

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Introduc	tion				

- The problem comes from a North American based brewing company, which is well established with concept of beer blending.
- The company is in the process of having more varieties of beers on the market, they are considering a wider range of raw materials with wider range of attributes.
- Blending has become a complex task since they have to process large raw material and attributes to produce quality beer blends at lowest cost.

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Company	y Aim				

Develop and solve a blending model that is able to :

- Determine the closest match of beer blends at the lowest cost.
- Allow the user to analyse the trade-off between the quality of the blends and the cost of the raw materials.

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Problem	Formulation				

Specific criteria :

- Minimize total production cost per week.
- Adhere as closely as possible to qualitative characteristics of existing blends.

What is an optimal solution?

- There may be an infinite number of solutions which may be said to be *optimal*.
- Each optima represents a trade-off (in this case cost vs quality).
- The client may have preferences or priorities that will guide or determine the choice of the final solution.

Introduction	Problem Formulation •••••••	Numerical Results	Conclusion	Further work	References
Given Data					
Target B	lend Characterist	ics			

- Number of blends : N
- Number of attributes : P
- Variable indexing blends : j
- Variable indexing attributes : *k*

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Given Data					
-					

Raw Material Characteristics

	Raw Materials	Attribute 1			Attribute P	l
	<i>RM</i> 1	r ₁₁			r _{1P}	
_	:	·			÷	
K =			·		÷	
	BMM	r		·	:	

- Number of raw materials : M
- Number of attributes : P
- Variable indexing raw materials : i

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Given Data					

Supply, Demand and Cost Constraints

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Given Data					
Variables	s : Blend Recipes				

where x_{ii} is the amount in kilograms of raw materials i in blend j

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Given Data					
Choice of r	models				

We explore two approaches to optimizing over multiple objectives :

- Bounded-*e*.
- Weighted sum.

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Bounded- ϵ					
Bounder	1- <i>e</i>				

- 1 Optimize over a single objective : Total cost (C).
- 2 Allow the other objectives to vary within an acceptable range and add to list of constraints below.

Constraints :

- Limited supply of materials
- 2 Minimum demand from distributors.
- **3** Accuracy of blend (constrained ϵ).

Assumptions :

- Each blend characteristic is of equal importance.
- 2 Difference in quality can be tasted when $\epsilon > 1.0$.

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Bounded- ϵ					
Bounded-	ϵ				

$$C = \sum_{j=1}^{N} \sum_{i=1}^{M} c_i x_{ij}$$

$$\begin{split} &\sum_{j=1}^{N} x_{ij} \leq s_i, \forall i \in [1, M] \text{ - Supply of materials} \\ &\sum_{i=1}^{M} x_{ij} \geq d_j, \forall j \in [1, N] \text{ - Demand of blend} \\ &\frac{\sum_{i=1}^{M} r_{ik} x_{ij}}{\sum_{i=1}^{M} x_{ij}} = b_{jk}, \forall j \in [1, N], \forall k \in [1, P] \text{ - Accuracy of blend} \end{split}$$

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Bounded- ϵ					
Bounded	- <i>e</i>				

$$C = \sum_{j=1}^{N} \sum_{i=1}^{M} c_i x_{ij}$$

$$\begin{split} &\sum_{j=1}^{N} x_{ij} \leq s_i, \forall i \in [1, M] \text{ - Supply of materials} \\ &\sum_{i=1}^{M} x_{ij} \geq d_j, \forall j \in [1, N] \text{ - Demand of blend} \\ &b_{jk} - \epsilon_{jk} \leq \frac{\sum_{i=1}^{M} r_{ik} x_{ij}}{|x_j|} \leq b_{jk} + \epsilon_{jk}, \forall j \in [1, N], \forall k \in [1, P] \\ &\text{ - Accuracy of blend } , \epsilon_{jk} \in [0, 1] \end{split}$$

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Bounded- ϵ					
Bounded	-e				

$$C = \sum_{j=1}^{N} \sum_{i=1}^{M} c_i x_{ij}$$

$$\begin{split} &\sum_{j=1}^{N} x_{ij} \leq s_i, \forall i \in [1, M] \text{ - Supply of materials} \\ &\sum_{i=1}^{M} x_{ij} \geq d_j, \forall j \in [1, N] \text{ - Demand of blend} \\ &\frac{\sum_{i=1}^{M} r_{ik} x_{ij}}{|x_j|} \geq b_{jk} - \epsilon_{jk}, \forall j \in [1, N], \forall k \in [1, P] , \epsilon_{jk} \in [0, 1] \\ &\frac{\sum_{i=1}^{M} r_{ik} x_{ij}}{|x_j|} \leq b_{jk} + \epsilon_{jk}, \forall j \in [1, N], \forall k \in [1, P] , \epsilon_{jk} \in [0, 1] \end{split}$$

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Bounded- ϵ					
Bounded-	ϵ				

$$C = \sum_{j=1}^{N} \sum_{i=1}^{M} c_i x_{ij}$$

$$\begin{split} &\sum_{j=1}^{N} x_{ij} \leq s_{i}, \forall i \in [1, M] \text{ - Supply of materials} \\ &\sum_{i=1}^{M} x_{ij} \geq d_{j}, \forall j \in [1, N] \text{ - Demand of blend} \\ &\sum_{i=1}^{M} (r_{ik} - b_{jk} + \epsilon_{jk}) x_{ij} \geq 0, \forall j \in [1, N], \forall k \in [1, P] , \epsilon_{jk} \in [0, 1] \\ &\sum_{i=1}^{M} (r_{ik} - b_{jk} - \epsilon_{jk}) x_{ij} \leq 0, \forall j \in [1, N], \forall k \in [1, P] , \epsilon_{jk} \in [0, 1] \end{split}$$

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Weighted Sum					
Weighte	d Sum				

- 1 Consider multiple objectives simultaneously.
- Introduce an additional set of auxiliary variables that represent closeness to desired qualitative characteristics
- Apply a weighted sum to all the objectives to obtain a single metric
- 4 Optimize over this summary descriptor

Constraints :

- Limited supply of materials
- 2 Minimum demand from distributors
- Auxiliary variables constrained by target blend characteristics
- Assumptions :
 - Each blend characteristic is of equal importance
 - 2 Difference in quality can be tasted when $\epsilon > 1.0$

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Weighted Sum					
Weighted	d Sum				

$$c_{1}(x) = \min \sum_{j=1}^{N} \sum_{i=1}^{M} c_{i}x_{ij}$$
$$c_{2}(x) = \min y_{jk}, \forall j \in [1, N], \forall k \in [1, P]$$

$$\begin{split} &\sum_{j=1}^N x_{ij} \leq s_i, \forall i \in [1, M] \text{ - Supply of materials} \\ &\sum_{i=1}^M x_{ij} \geq d_j, \forall j \in [1, N] \text{ - Demand of blend} \\ &y_{jk} \geq |\sum_{i=1}^M (r_{ik} - b_{jk}) x_{ij}|, \forall j \in [1, N], \forall k \in [1, P] \end{split}$$

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Weighted Sum					
Weighted	d Sum				

$$\mathcal{C} = \lambda_1 c_1(x) + \lambda_2 c_2(x), ext{where} \sum_i \lambda_i = 1$$

$$\sum_{j=1}^{N} x_{ij} \leq s_i, \forall i \in [1, M] \text{ - Supply of materials}$$
$$\sum_{i=1}^{M} x_{ij} \geq d_j, \forall j \in [1, N] \text{ - Demand of blend}$$
$$y_{jk} \geq \sum_{i=1}^{M} (r_{ik} - b_{jk}) x_{ij}, \forall j \in [1, N], \forall k \in [1, P]$$
$$y_{jk} \leq -\sum_{i=1}^{M} (r_{ik} - b_{jk}) x_{ij}, \forall j \in [1, N], \forall k \in [1, P]$$

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Weighted Sum					
Weighte	d Sum				

Two important questions :

- How did we set the weights λ_i ?
 - We viewed the weights as a trade-off between cost and quality.
 - However, often the solution obtained does not reflect the preferences expressed in the choice of weights.
- Should we scale c1(x) and c2(x)?
 - Objective functions may be measured in different units and may have different orders of magnitude.
 - In this case, y_{jk} is a proxy for blend characteristics and we hope $y_{jk} \ll 1.0$, whereas production cost = \$1,000,000.
 - However, y_{jk} may assume very large values (100, 000 1, 000, 000) during numerical solution, not directly representative of blend closeness to target characteristic.
 - Some authors discourage scaling of objective functions when weights are used as trade-offs ($\sum_i \lambda_i = 1$) and our empirical results confirm this.

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Numeric	al Results				

Run experiments for :

Bounded- ϵ :

- several runs where $\epsilon \in [0.3, 1.0]$ No solutions found when $\epsilon < 0.3$
- Weighted sum :
 - several runs where $\lambda_1 \in [0.1, 0.9]$

$$\lambda_2 = 1.0 - \lambda_1$$

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Results	: Cost vs Quality				

FIGURE - Trade-off between cost and adherence to target characteristics

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
•					

FIGURE - Distribution of mean violations of blend characteristics over all experiments

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References

Comparison : Maximum violation

FIGURE - Distribution of maximum violation of blend characteristics over all experiments

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References

Comparison : Total number of violations

FIGURE – Distribution of number of violations blend characteristics over all experiments ($\delta \ge 0.05$)

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Compari	ison : Typical Can	didate Solutior	าร		

Bounded epsilon = 0.3 candidate solution

FIGURE - Candidate solution displays several mild deviations from the target blend characteristics

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References		
Comparison : Typical Candidate Solutions							

Weighted sum candidate solution

FIGURE – Candidate solution displays a few sharp deviations from the target blend characteristics with near perfect match elsewhere

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Conclus	ion				

- Solutions represent a trade-off between cost and quality, where the client's preferences will guide the final choice of model.
- When searching through a possibly infinite set of candidate solutions, different approaches may yield solution sets with special characteristics.
- Different approaches may fill in parts of the solution space which would be inaccessible if one follows only one method.
- Despite a large range of weight preferences, the weighted sum method favours solutions that prioritize quality over cost.

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Further	work				

- For Bounded-*ϵ* : introduce *ϵ_{jk}* for expert to set individual preferences on blend characteristics.
- For Weighted Sum : introduce w_{jk} weights for expert to set individual weights on y_{jk} .
- These more general weights will also allow for Monte Carlo Search in the solution space.
- Explore further approaches like Genetic Algorithm Search and other Meta-heuristic techniques.

Introduction	Problem Formulation	Numerical Results	Conclusion	Further work	References
Referen	ces				