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Abstract

The study group was asked to consider methods for determining the optimal
use of sugarcane grown in the South African industry with particular regard to
diversification of the product to increase profitability. This proved to be a very
difficult problem given the large number of possible products and costs. The
group was able to summarize the techniques that might be used by considering
two simplified model sub-problems and considering optimal outcomes for each.
The overall “solution” could be obtained by applying these techniques across
all processes of the refineries.

1 Introduction

South African sugar refineries produce sugar for both the domestic and international
markets. The processes involved in making sugar produce a number of by-products,
and great efficiencies are to be gained by recycling. In addition, some of the by-
products can be used to generate energy which can be used to power the process,
making the factory self-sufficient in energy. While its major product is sugar, there
are a number of other products that could be produced and sold. In particular, sugar
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cane is an ideal renewable resource for biofuels as it is an extremely efficient converter
of sunlight and carbon dioxide. In fact, there is a complicated combination of choices
made by the management that may increase both profitability and efficiency of the
whole operation.

The question for the study group was “Can profitability be increased by alterna-
tive use of by-products to make ethanol, bio-polymers or generate power, ...?” This
decision has to be made in the context of providing sufficient sugar products to the
local market. The problem is therefore to consider all of the possible outcomes, their
cost structures, capital investment required and marketability to find the optimal
long term strategy for the local industry.

This decision making process can therefore be considered as a large nonlinear,
dynamic optimization problem. Since it was unlikely that the full problem could
be formulated and solved in the time available at the MISG, the group decided to
create a simplified model including several different processes and outcomes and
hence create a framework for the much larger model that may be worked on as
a follow-up. It was therefore decided to consider two smaller problems; a single
process requiring optimization within a single process and the various possible uses
of a single by-product in the other, thus deriving the appropriate mathematical
processes for decision making. These techniques can be applied in principle to other
processes, groups of processes or the whole operation. There are some papers which
do similar things for different parts of the refinement process, such as [4]. Much
more detail of the sugar refining process can be found in books such as [1] and [2].

2 Model Problem 1

A number of processes within the plant consist of various options that may be taken
by managers. One such problem involves so-called “Imbibition”, or the addition of
water to sugarcane to extract the sucrose. The more water added per ton, the more
sucrose that can be obtained. Suppose that the amount of sucrose extracted per ton
of sugarcane can be written as

E = 1− e−5.72I (1)

where I is the imbibition ratio or ratio of mass of water to mass of sugarcane and
E is the proportion of the total amount of sucrose available per ton of sugarcane
(often around 15% [3]) . The more water that is added, the more of the sucrose
that can be extracted. This is not an exact formula but is typical of the behaviour
of this process, as discussed in [5, 6]. This trial form was provided by the industry
representatives.

However, the process requires steam for the extraction. Burning 100 tons of
bagasse (a bi-product of the process) can produce 55 tons of steam, but the total
amount of steam required is estimated to be S = 50 + 25I tons per 100 tons of
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cane. Therefore, if more than 55 tons is required the steam must be generated by
purchasing and burning coal at a cost of around C per ton, with each ton producing
10 tons of steam. While most of the quantities quoted are fixed by the process, the
price of coal is variable and hence we leave it undefined for now. Since (relatively)
the cost of burning bagasse is trivial, the profit function is only moderated by coal
if I > 0.2, since then more than 55 tons of steam are required. Therefore, if the sale
price of sucrose is PS per ton we can write the profit V per 100 tons as

V (I, C, PS) =

{

15PS(1− e−5.72I), I ≤ 0.2

15PS(1− e−5.72I)− C

10
(25I − 5), I > 0.2.

(2)

To choose the imbibition rate, I, to maximize the profit, we note that if C and PS

are fixed,
dV

dI
= 85.8PS e−5.72I

− 2.5C = 0

which implies that

Iopt =
−1

5.72
log

[

2.5C

85.8 PS

]

(3)

is the optimal value of I. Using a typical coal price of C = R 1500/ton and sucrose
sale price PS = R 3400/ton, then Iopt = 0.7612 and the profit is Vmax = R 482/ton.

It is also of interest to consider how this may change if the price of coal or sale
price of sucrose change. At least locally, this can be determined by taking partial
derivatives of V with respect to C and PS to see their influence on V . Then we have

∂V

∂C
= −2.5I − 0.5 ,

∂V

∂PS

= 15
(

1− e−5.72I
)

,

which means that close to the optimal value of I, a 1% increase in cost of coal will
reduce the profitability by around 0.8%, while an increase in sale price of sucrose
of 1% will increase profitability by about 1.08%. This suggests that unless there
is quite a large change in price of sucrose or cost of coal then modifying the value
of “Imbibition” will only marginally improve the outcome. However, it may be
worth computing the outcome over a period of time and monitoring the profit/loss
computed by either changing I or leaving it the same as prices fluctuate.

3 Model Problem 2

In this problem we have to deal with a choice between several products to optimize
the profit from a single input. Sugar cane consists of a range of components including
glucose, fibre, sucrose, fructose, cellulose and starch along with 70% water. In our
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Figure 1: Cost functions for sugar, ethanol and biopolmers as approxi-
mated in the model

model problem we considered only the “juice” derived from the extraction process.
This juice can be sub-divided in the following ways, giving three possible products
with different values, costs, etc.

Sugarcane ⇒ Extraction ⇒ Juice →











Sugar

Ethanol

Biopolymer

→ . . .Market (4)

The goal of the group was to formulate the problem for the uses of this juice and
then consider optimization of profit given different scenarios. Thus the problem can
be thought of as to find the combination of proportions of each product that will
maximize the profit. The issue of time scales is important here, since some processes
involve a good deal of capital expenditure to set up (for example, bio-refinery), while
others can be set up quickly. Short term profit may not be optimal in the long term.
However, we begin with consideration of a simple model.

In this model, we simply set up three possible choices for use of the juice and
give them reasonable cost and sale price functions. Given these we can then find
the optimal outcome. Therefore, the value, V , of each product including costs and
sale price can be written as

Vk = Ak (Pk − C(Ak)) , k = 1, 2, 3 ,

where Ak =amount (proportion) of product k, Pk=price of product k, C(Ak)=cost
function for product k which will clearly depend on Ak. Each product will have
different cost functions. In this work we will assume that the price is constant,
although it is possible to relax this assumption. The three products we will consider
are sugar (k = 1), ethanol (k = 2) and biopolymer (k = 3). The amounts, Ak, k =
1, 2, 3, are scaled to be a proportion of the total amount of juice, so we can say that
A1 + A2 + A3 = 1. Using information provided by the sugar industry, reasonable
functions for the cost structure of these items can be seen in Figure 1.
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In the case of sugar, a linear growth in cost (with rate k1) with the amount of
sugar produced, A1, was assumed and the price was assumed to be P1, giving

V1 = A1(P1 − k1A1) . (5)

This is an approximation to the real situation (see the dashed line in Figure
1 (a)). While it may seem strange to have this increase in cost per yield, it is related
to the cost of extracting more sugar from a fixed crop, as in Model 1 above. Clearly
the cost function is more complicated in reality, but we have used this as an example
only.

Ethanol was assumed to have a constant cost per ton, k2, independent of the
amount produced, A2, so that

V2 = A2(P2 − k2) , (6)

where P2 is the price of ethanol.

Our third product was more complicated because there is a fixed set-up cost, k3,
(independent of amount) but then decreasing costs (rate k4) as more is produced,
giving a value function

V3 = A3(P3 − (k3 − k4)A3 − k3) , (7)

where A3 is the amount of biopolymer and P3 is the sale price. Note that all
quantities are per ton of the original juice.

3.1 Mathematical formulation

Given these cost functions, we can set up a simple optimization problem by com-
puting the maximum value per ton of the total value of the three items under
consideration, so that the problem becomes;

max V = V1 + V2 + V3 (8)

s.t A1 +A2 +A3 = 1

A1 ≥ 0;A2 ≥ 0;A3 ≥ 0

where V1, V2 and V3 are given by equations (5),(6),(7), respectively.

Note that this can be reduced to a two-dimensional problem by using the con-
servation law A2 = 1−A1 −A3. This condition comes from the fact that we have a
fixed amount of juice (which can be scaled to be one).
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Figure 2: Contours of value given data in (12). The optimal feasible
solution here is A1 = 0, A2 = 0 and A3 = 1 ⇒ Vmax = 79000

3.2 Direct solution

We can solve this simple problem in the usual way. Writing the problem in terms
of A1 and A3, we have

max V = V1 + V2 + V3 (9)

= A1(P1 − β)− k1A
2
1 + β +A3(α− β)− γA2

3

where α = P3 − k3, β = P2 − k2, and γ = k3 − k4.

Taking partial derivatives with respect to A1 and A3 gives stationary points at

A1 =
P1 − β

2k1
and A3 =

α− β

2γ
(10)

and it is easy to verify that these give a local maximum provided k3 > k4, when

Vmax =
(P1 − β)2

2k1
+

(α− β)2

2γ
+ β. (11)

In these equations it is clear that the sale prices of the product need to be based
on the amount produced from a ton of juice. Taking estimates from the sugar
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research institute, we chose;

k1 = R 1200/ton, k2 = R 850/ton, (12)

k3 = R 17000/ton, k4 = R 13000/ton,

P1 = R 5400, P2 = R 1250, P3 = R 100000.

Contours of value given data in (12) are shown in Figure 2. Using these values,
the optimal solution corresponds to Vmax ≈ 8.6 × 105 with A1 = 2.08, A3 = 10.3
and A2 = −11.38 which is of course infeasible. The optimal feasible solution occurs
when A3 = 1 and A1 = A2 = 0 with Vmax = 79, 000. Out of interest, solutions occur
with A1 = 1, A2 = A3 = 0, Vmax = 4200, and A2 = 1, A1 = A3 = 0 with Vmax = 400.
The reason for the dominance of product 3, the biopolymer, is the high price for it
relative to the other products.
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Figure 3: Contours of value given data in (13) The optimal solution of
A1 ≈ 0.667, A2 ≈ 0.259, A3 ≈ 0.075 ⇒ Vmax ≈ 1956 is indicated.

However, it is of interest to determine what would need to happen to create
a situation in which a feasible optimal solution exists in which all products are
utilised to some degree. One such solution is obtained by reducing the sale price
of biopolymer to P3 = R19, 000, and increasing the sale price of the ethanol to
P2 = R2, 250, in which case the optimal solution becomes

A1 ≈ 0.667, A2 ≈ 0.259 and A3 ≈ 0.075 with Vmax ≈ 1956. (13)

The profit contours of this case are shown in Figure 3. This optimum compares with
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the 3 single-product options of

A1 = 1, A2 = A3 = 0, V = 1800

A2 = 1, A1 = A3 = 0, V = 1850

A3 = 1, A1 = A2 = 0, V = −2000

In order to make the problem “interesting” we have had to reduce the price of
biopolymer by 80%, and almost double the price of ethanol.

Therefore, in this problem the dominance of the price of A3 in the case given
by the original data provided renders the problem inadequate for the purposes of
testing the general ideas to be employed. Consequently, we will use the modified
values to examine the sensitivity of the problem.

3.3 Sensitivity analysis

Given that the different prices on the market are not fixed, we were interested in how
changes in these may affect the value of V . To determine this we can examine the
affect of each price individually on the optimal value. We can do this by considering
the rate of change of V with respect to each of the prices, that is

∂V

∂P1

= A1 ,

∂V

∂P2

= A2 ,

∂V

∂P3

= A3 ,

which simply means that the overall value of the process with respect to each product
is a linear function of the price. Perhaps a better indicator is to consider the effect
of the cost on the amount produced, at the optimal value. In that case we take the
optimal form of each of A1, A2 and A3 and see how each is affected by the change
in price of the other commodities. In that case;

∂A1

∂P1

=
1

2k1
,

∂A1

∂P2

=
−1

2k1
,

∂A1

∂P3

= 0,

∂A2

∂P1

=
−1

2k1
,

∂A2

∂P2

=
1

2k1
+

1

2(k3 − k4)
,

∂A2

∂P3

=
−1

2(k3 − k4)
,

∂A3

∂P1

= 0,
∂A3

∂P2

=
1

2k1
+

−1

2(k3 − k4)
,

∂A3

∂P3

=
1

2(k3 − k4)
.

This suggests that close to the optimum, a change in the price of sugar or ethanol
has little effect on the other, the adjustment being done via a change in the amount
of ethanol. Also, given that k1 is quite a bit less than (k3−k4), the impact of changes
in the price of P1 seem to be greater than changes in P3.
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3.4 Remarks

This simple model containing three products encapsulates all of the basic optimiza-
tion steps required to make decisions based on the data provided. Clearly, as the
number of options increases, the problem becomes much more complicated and an-
alytical solution far less likely. However, mathematical packages such as Matlab,
octave and scilab have adequate tools for tackling such problems. The study
group was able to replicate all of the above results using Matlab.

4 Stochastic simulation

In both of the problems above it is possible to consider the effect of volatility in
the price of various products in the market and how it will alter the strategy of
the sugar refinery. The study group decided to work with the second model only
and perform stochastic simulations assuming a beta distribution of the the price
of various components. The beta distribution was chosen because by varying the
parameters a range of different shapes for the behaviour could be examined.

Figure 4: Typical evolution of the benefit over time for a single simulation.
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Figure 5: Benefit from a number of simulations with standard deviation
of outcomes - a measure of risk

In this case the prices of all of the products were allowed to vary within a beta dis-
tribution. The profit over a 25 year period can then be calculated for a large number
of simulations, thus providing a distribution of possible profit (benefit) if the price
varies in this way. The simulations themself provide the range of possible outcomes,
while the standard deviation of the outcomes provides a measure of “certainty” of
profit given the appropriate strategy. Figure 4 shows the benefit function plotted
against time (in months) over 25 years in a typical single simulation. There is quite
a lot of scatter in the results, but this example is really a demonstration of what
might be done.

Figure 5 shows a plot of benefit against standard deviation in the profit, to
provide some estimate of the variability of the results. In this example, both product
prices and the cost of the products was varied. This provides managers with a tool
to evaluate the risk of each strategy.

5 Conclusion

The study group was asked to consider a very complicated problem involving a
large number of unknowns. Instead of attempting to solve the full problem in the
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limited time available, two model problems were solved in order to demonstrate the
techniques available and how risk assessment might be conducted. Sensitivity to
price variation was considered and stochastic simulations over an extended period
were performed to provide a measure of risk. A more sophisticated model could be
built including all possible products and services, but this would be a time consuming
exercise and it may be better to break the possible processes into smaller components
and then attempt to optimize within each. Once optimal choices have been made
within the various components some assessment of the combined strategy can be
made.
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