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Abstract

Thin spray-on liners (TSL’s) have been found to be effective for structurally
supporting the walls of mining tunnels and thus reducing the occurrence of
rock bursts, an effect primarily due to the penetration of cracks by the liners.
Surface tension effects are thus important. However TSLs are also used to
simply stabilize rock surfaces (for example to prevent rock fall) and in this
context crack penetration is desirable but not necessary, and the tensile and
shearing strength and adhesive properties of the liner determine its effective-
ness. We examine the effectiveness of non-penetrating TSLs in a (global) lined
tunnel and a (local) rock support context. In the tunnel context we examine
the effect of the liner on the stress distribution in a tunnel subjected to a
geological or mining event. We show that the liner has little effect on stress-
es in the surrounding rock and that tensile stresses in the rock surface are
transmitted across the liner, so that failure is likely to be due to liner rupture
or detachment from the surface. In the local rock support context loose rock
movements are shown to be better achieved using a small Young’s modulus,
but high rupture strength liner.
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1 Introduction

Shotcrete (concrete) has been used over the past 57 years [1] and possibly longer
for mining tunnel strengthening, however over the past 10 years thin (4mm) spray-
on liners (TSLs) have been used and have also been found to be effective for both
protecting the miners from falling rock and reducing the occurrence of rock bursts
and tunnel collapse. Evidently the application of a spray to a tunnel wall is much
simpler and cheaper than applying shotcrete to the wall so that TSLs are much
preferred providing they are effective. The support mechanism associated in the two
cases is very different. Whereas shotcrete, being elastically strong, provides direct
structural (arching) support, the elastically weak and thin TSLs cannot directly
provide such support. The TSL’s act by filling cracks in the rock face and this
effectively repairs the rock face by both preventing crack extension so that key rocks
stay in place, (Fowkes, Freitas and Stacey [2]), and by increasing the hoop stress
support in the filled surface layer of rock to that of the undamaged rock, (Mason
and Stacey [1]). However mining engineers now use TSLs in a variety of mining
environments which do not rely on the strengthening caused by crack penetration,
although such penetration would be an added bonus. A case in point is the coating
of a newly mined surface to stabilize it by preventing rock fall, thus enabling work
to proceed unimpeded. In these (non-penetration) applications the liners provide
some resistance to the fracture failure caused by crack creation and extension, but in
cases in which the rock is already fractured the liners act to prevent further dilation.
In such contexts it is important to select the ‘right’ TSL for the specific application
and geological situation, and this was the task the MISG was asked to address. The
mechanical properties of the liner (elastic properties and tensile or shear strength)
and the bonding strength of the liner on the rock surface are most important in
this regard, and various geometries were suggested. Some end-users view tensile
strength to be the most important property and the bonding to be an inferior one
while some others consider the bonding to be important also.

Stacey and Yu [3] and Tannant [4] identified various mechanisms for the action of
TSLs and discrete element models were used by Stacey [5] to simulate liner behaviour
in tunnels. Whilst such numerical work is useful in a particular context, it is not so
useful for determining the effect of various liner and contact adhesion properties on
the outcome. The analytical models developed here are more useful in this regard.

In Sections 2 and 3 the stress distribution in a TSL lined cylindrical tunnel due
to the application of a tensile stress at infinity (associated with either a geological or
mining event) is determined, with particular emphasis placed on the liner strength
and adhesion properties. In Section 4 the local rock support properties of the liner
are examined; again the effect of elastic and tensile strength and bond strength on
the outcome are determined. Whilst the specific circumstances examined do not
cover all possible circumstances of TSL use it is felt that the situations considered
are representative. We present conclusions in Section 5.
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2 Cylindrical excavation with a liner in a tensile

field

Consider a cylindrical tunnel in a rock mass to which has been applied a thin spray-
on liner. The tunnel is perturbed by a tensile stress T at infinity which models
a seismic event or a disturbance due to a mining excavation. Cylindrical polar
coordinates (r, θ, z) with origin at the centre of a cross-section of the tunnel are
used with the z-axis along the axis of the tunnel. The tunnel has radius b and the
rock mass is the region b ≤ r ≤ ∞. The thin spray-on liner occupies the region
a ≤ r ≤ b. It is assumed that the tunnel is sufficiently long that the plane strain
theory of elasticity applies. All elastic variables are independent of z and there
is no displacement in the z-direction. Quantities in the liner and the rock mass
are denoted by a subscript or superscript 1 and 2, respectively. The tunnel and
liner with the cylindrical polar and Cartesian coordinate systems are illustrated in
Figure 1. We choose the perturbing tensile stress T to be in the x-direction because
this will give the greatest hoop stress at θ = π

2
and the rocks which are detached

will fall under gravity.

vv

Figure 1: Cylindrical tunnel of radius b in an infinite elastic rock mass (region 2,
b ≤ r ≤ ∞) with a spray-on liner (region 1, a ≤ r ≤ b) subjected to a uniform
tensile stress T at infinity.

In order to obtain the boundary condition as r →∞ consider the Cauchy stress
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tensor at large distances from the excavation expressed in Cartesian coordiantes
(x, y):

r →∞ , τ (2)xx = T , τ (2)xy = 0 , τ (2)yy = 0 . (2.1)

The Airy stress function φ(x, y) is defined by [6]

τxx =
∂2φ

∂y2
, τxy = − ∂2φ

∂x∂y
, τyy =

∂2φ

∂y2
. (2.2)

Solving (2.1) and (2.2) for the Airy stress function gives

r →∞ : φ2 =
1

2
T y2 =

1

4
T r2(1− cos 2θ) , (2.3)

where terms linear in x and y are dropped because they do not contribute to the
stress tensor. The boundary condition as r → ∞ is imposed on φ2(r, θ) because
φ2(r, θ) is defined on the domain b ≤ r ≤ ∞. There is no boundary condition as
r → ∞ on the Airy stress function φ1(r, θ) because φ1(r, θ) is defined on the finite
domain a ≤ r ≤ b.

The Airy stress functions, φ1(r, θ) and φ2(r, θ), satisfy the biharmonic equation:

a ≤ r ≤ b , ∇4φ1 = 0 , (2.4)

b ≤ r ≤ ∞ , ∇4φ2 = 0 , (2.5)

where in cylindrical polar coordinates

∇4 =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)2

. (2.6)

The linear surface r = a is traction free. An aim of this investigation is to determine
if the bonding of the TSL on the rock is a major contributing factor in stabilising the
surface of the tunnel. We therefore introduce a weak bonding factor λ (0 ≤ λ ≤ 1)
to model an excavation in which the liner is not in contact with the rock at all points
of the surface as illustrated in Figure 2. The radial and tangential components of
the displacement vector are ur(r, θ) and uθ(r, θ). The boundary conditions are

r = a : τ (1)rr (a, θ) = 0 , (2.7)

r = a : τ
(1)
rθ (a, θ) = 0 , (2.8)

r = b : τ (2)rr (b, θ) = τ (1)rr (b, θ) , (2.9)

r = b : τ
(2)
rθ (b, θ) = λ τ

(1)
rθ (b, θ) , 0 ≤ λ ≤ 1 , (2.10)

r = b : u(2)r (b, θ) = u(1)r (b, θ) , (2.11)

r = b : u
(2)
θ (b, θ) = u

(1)
θ (b, θ) , (2.12)

r →∞ : φ2(r, θ) =
T

4
r2 − T

4
r2cos2θ . (2.13)
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A liner not firmly bonded to the rock mass is modelled in (2.10) by unequal tangential
stress at the interface. One can think of the weak bonding factor λ as representing
the ratio of the actual area of contact to the surface area of the rock at the interface.
The boundary conditions (2.11) and (2.12) depend on the elastic constants through
the inverse Hooke’s law and the stress will therefore depend on the elastic constants
of the liner and rock mass.

Figure 2: Weak bonding of the liner to the excavation.

Guided by the boundary condition (2.13) we look for a solution in each region
of the form

φ(r, θ) = f0(r) + f2(r) cos 2θ . (2.14)

Equation (2.14) satisfies the biharmonic equation provided

d4f0
dr4

+
2

r

d3f0
dr3
− 1

r2
d2f0
dr2

+
1

r3
df0
dr

= 0 , (2.15)

d4f2
dr4

+
2

r

d3f2
dr3
− 9

r2
d2f2
dr2

+
9

r3
df2
dr

= 0 . (2.16)

Equation (2.15) and (2.16) are both equidimensional differential equations in r. We
therefore look for solutions of the form

f(r) = Anf
n , (2.17)

where An is a constant. Equation (2.17) satisfies (2.15) provided n = 0, 0, 2, 2. Since
n = 0 and n = 2 are repeated roots the general solution of (2.15) is [6]

f0(r) = A+Br2 + C ln r +Dr2 ln r , (2.18)

where A,B,C and D are constants. Equation (2.17) satisfies (2.16) provided
n = 4, 2, 0,−2 and therefore the general solution of (2.16) is

f2(r) = M r4 +N r2 + P +
Q

r2
, (2.19)
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where M,N,P and Q are constants. Hence

φs(r, θ) = As +Bs r
2 + Cs ln r +Ds r

2 ln r

+

(
Ms r

4 +Ns r
2 + Ps +

Qs

r2

)
cos 2θ , s = 1, 2 . (2.20)

Since the components of the Cauchy stress tensor are defined in terms of the deriva-
tives of φ, we can take A1 = 0 and A2 = 0, while from the boundary condition (2.13)
as r →∞,

B2 =
T

4
, D2 = 0 , M2 = 0 , N2 = −T

4
. (2.21)

Hence

φ1(r, θ) =B1r
2 + C1 ln r +D1r

2 ln r +

(
M1r

4+N1r
2+ P1+

Q1

r2

)
cos 2θ, (2.22)

φ2(r, θ) =
T

4
r2 + C2 ln r +

(
−T

4
r2 + P2 +

Q2

r2

)
cos 2θ . (2.23)

Equations (2.22) and (2.23) contain 10 unknown constants which will be obtained
from 10 algebraic equations derived from the boundary conditions.

In order to impose the boundary conditions it is first necessary to calculate the
components of the Cauchy stress tensor which, in terms of the Airy stress function,
are

τrr =
1

r2
∂2φ

∂θ2
+

1

r

∂φ

∂r
, (2.24)

τrθ = − ∂
∂r

(
1

r

∂φ

∂θ

)
, (2.25)

τθθ =
∂2φ

∂r2
. (2.26)

The equations of static equilibrium with zero body force are identically satisfied.
The components of the stress tensor in the liner are

τ (1)rr (r, θ) = 2B1 +D1 +
C1

r2
+ 2D1 ln r +

[
−2N1 −

4P1

r2
− 6Q1

r4

]
cos 2θ , (2.27)

τ
(1)
rθ (r, θ) =

[
6M1r

2 + 2N1 −
2P1

r2
− 6Q1

r4

]
sin 2θ , (2.28)

τ
(1)
θθ (r, θ) = 2B1 + 3D1 −

C1

r2
+ 2D1 ln r +

[
12M1r

2 + 2N1 +
6Q1

r4

]
cos 2θ . (2.29)
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The components of the Cauchy stress tensor in the rock mass are obtained from
(2.27) to (2.29) by setting:

B1 =
T

4
, C1 = C2 , D1 = 0 , M1 = 0 , N1 = −T

4
, P1 = P2 , Q1 = Q2.

(2.30)
This gives

τ (2)rr (r, θ) =
T

2
+
C2

r2
+

[
T

2
− 4P2

r2
− 6Q2

r4

]
cos 2θ , (2.31)

τ
(2)
rθ (r, θ) =

[
−T

2
− 2P2

r2
− 6Q2

r4

]
sin 2θ , (2.32)

τ
(2)
θθ (r, θ) =

T

2
− C2

r2
+

[
−T

2
+

6Q2

r4

]
cos 2θ . (2.33)

The four boundary conditions for the stress tensor, (2.7) to (2.10), give two
systems of linear algebraic equations for the ten constants, The first system consists
of two equations for the four constants B1, C1, D1 and C2:

2a2B1 + C1 + a2(1 + 2 ln a)D1 = 0 , (2.34)

2b2B1 + C1 + b2(1 + 2 ln b)D1 − C2 =
b2

2
T . (2.35)

The second system consists of four equations for the six constants M1, N1, P1, Q1,
P2 and Q2:

a4N1 + 2a2P1 + 3Q1 = 0 , (2.36)

3a6M1 + a4N1 − a2P1 − 3Q1 = 0 , (2.37)

b4N1 + 2b2P1 + 3Q1 − 2b2P2 − 3Q2 = −b
4

2
T , (2.38)

3λb6M1 + λb4N1 − λb2P1 − 3λQ1 + b2P2 + 3Q2 = −b
4

4
T . (2.39)

Finally consider the displacement boundary conditions (2.11) and (2.12). The
components ur(r, θ) and uθ(r, θ) of the displacement vector are calculated as follows
The inverse Hooke’s law for plane strain is first applied to obtain the strain tensor
eik in terms of the stress tensor τik:
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err =
(1− σ2)

E
τrr −

σ(1 + σ)

E
τθθ , (2.40)

erθ =
(1 + σ)

E
τrθ , (2.41)

eθθ =
(1− σ2)

E
τθθ −

σ(1 + σ)

E
τrr , (2.42)

where E is Young’s modulus and σ
(
0 ≤ σ ≤ 1

2

)
is the Poisson ratio. But in

cylindrical polar coordinates

err =
∂ur
∂r

, (2.43)

erθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
, (2.44)

eθθ =
1

r

∂uθ
∂θ

+
ur
r
. (2.45)

The system (2.43) to (2.45) consists of three first order partial differential equations
for the two unknowns, ur and uθ. The compatibility condition for this system is
the biharmonic equation for the Airy stress function which will be satisfied because
the stress tensor which will be used in the inverse Hooke’s law is calculated from an
Airy stress function.

Consider first the displacement components, ur and uθ, in the liner. We substi-
tute (2.27) to (2.29) into the inverse Hooke’s law (2.40) to (2.42) and then substitute
the components of the strain tensor into (2.43) to (2.45). We obtain the following
three first order partial differential equations for ur and uθ:

∂u
(1)
r

∂r
=

(1 + σ1)

E1

[
2(1− 2σ1)B1 +

C1

r2
+ (1− 4σ1)D1 + 2(1− 2σ1)D1 ln r

+

(
−12σ1M1r

2 − 2N1 − 4(1− σ1)
P1

r2
− 6Q1

r4

)
cos 2θ

]
, (2.46)

1

r

∂u
(1)
r

∂θ
+
∂u

(1)
θ

∂r
− u

(1)
θ

r
=

(1 + σ1)

E1

[
12M1r

2 + 4N1 −
4P1

r2
− 12Q1

r4

]
sin 2θ , (2.47)

∂u
(1)
θ

∂θ
+ u(1)r =

(1 + σ1)

E1

[
2(1− 2σ1)B1r −

C1

r
+ (3− 4σ1)D1r + 2(1− 2σ1)D1r ln r

+

(
12(1− σ1)M1r

3 + 2N1r + 4σ1
P1

r
+

6Q1

r3

)
cos 2θ

]
. (2.48)
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We integrate (2.46) and (2.48) with respect to r and θ which gives ur(r, θ) and
uθ(r, θ). They contain arbitrary functions of integration which are obtained by
substituting ur and uθ into the remaining equation (2.47) and using separation of
variables. This gives

u(1)r (r, θ) =
(1 + σ1)

E1

[
2(1− 2σ1)B1r −

C1

r
−D1r + 2(1− 2σ1)D1r ln r

+

(
−4σ1M1r

3 − 2N1r + 4(1− σ1)
P1

r
+

2Q1

r3

)
cos 2θ

]
−F1 sin θ +G1 cos θ , (2.49)

u
(1)
θ (r, θ) =

(1 + σ1)

E1

[
4(1− σ1)D1rθ

+

(
2(3− 2σ1)M1r

3 + 2N1r − 2(1− 2σ1)
P1

r
+

2Q1

r3

)
sin 2θ

]
−F1 cos θ −G1 sin θ +H1r , (2.50)

where F1, G1 and H1 are constants. The displacement in the rock mass is obtained
from(2.49) and (2.50) by using the transformation (2.30):

u(2)r (r, θ) =
(1 + σ2)

E2

[
(1− 2σ2)

T

2
r − C2

r

+

(
T

2
r + 4(1− σ2)

P2

r
+

2Q2

r3

)
cos 2θ

]
− F2 sin θ +G2 cos θ , (2.51)

u
(2)
θ (r, θ) =

(1 + σ2)

E2

[
−T

2
r − 2(1− σ2)

P2

r
+

2Q2

r3

]
sin 2θ

−F2 cos θ −G2 sin θ +H2r , (2.52)

where F2, G2 and H2 are constants. For single valued solutions for u
(1)
θ (r, θ) it is

necessary that
D1 = 0 . (2.53)

We now substitute (2.49) to (2.53) into the displacement boundary conditions
(2.11) to (2.12). We obtain
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2(1− 2σ1)b
2B1 − C1 +

(
1− σ1
1− σ2

)
E ′1
E ′2

C2 =
1

2
(1− 2σ2)

(
1− σ1
1− σ2

)
E ′1
E ′2

b2T, (2.54)

2σ1 b
6M1 + b4N1 − 2(1− σ1)b2P1 −Q1 + 2(1− σ1)

E ′1
E ′2

b2P2

+

(
1− σ1
1− σ2

)
E ′1
E ′2

Q2 = −1

4

(
1− σ1
1− σ2

)
E ′1
E ′2

b4T , (2.55)

(3− 2σ1)
6M1 + b4N1 − (1− 2σ1) b

2P1 +Q1

+ (1− 2σ2)

(
1− σ1
1− σ2

)
E ′1
E ′2
b2P2 −

(
1− σ1
1− σ2

)
E ′1
E ′2

Q2 = −1

4

(
1− σ1
1− σ2

)
E ′1
E ′2
b4T , (2.56)

and

F1 = F2 = F , G1 = G2 = G , H1 = H2 = H , (2.57)

were the reduced elastic modulus E ′ is defined by

E ′ =
E

1− σ2
. (2.58)

We will see that the solution depends on the ratio E ′1/E
′
2 of the reduced elastic

moduli.
Consider now the physical interpretation [1] of the displacement

ur(r, θ) = −F sin θ +G cos θ , (2.59)

uθ(r, θ) = −F cos θ −G sin θ +Hr , (2.60)

which occurs in (2.49) and (2.52). When written in Cartesian coordinates this
displacement is

ux(x, y) = G−Hy , uy(x, y) = −F +Hx , (2.61)

which describes a rigid body translation of G and −F in the x and y directions and
a rigid body rotation H about the z-axis. We therefore take F = G = H = 0.

Since D1 = 0, only nine constants remain to be determined. The nine linear
algebraic equations for the nine constants split into two uncoupled systems. Equa-
tions (2.34) and (2.35) with D1 = 0 and (2.54) form a system of three equations
for the three unknown constants B1, C1 and C2 which we will refer to as System A.
System A can be written in matrix form as
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EX = F (2.62)

where

E =


2a2 1 0

2b2 1 −1

2(1− 2σ1)b
2 −1

(
1− σ1
1− σ2

)
E ′1
E ′2

 (2.63)

and

X =


B1

C1

C2

 , F =


0

1

2
b2T

1

2
(1− 2σ2)

(
1− σ1
1− σ2

)
b2T

 . (2.64)

Equations (2.36) to (2.39), (2.55) and (2.56) form a system of six equations for six
unknown constants, M1, N1, P1, Q1, P2 and Q2 which we will refer to as System B.
System B can be written in matrix form as

RY = S (2.65)

where

R =



0 a4 2a2 3 0 0

3b6 a4 −a2 −3 0 0

0 b4 2b2 3 −2b2 −3

3λb6 λb4 −λb2 −3λ b2 3

2σ1b
6 b4 −2(1− σ1)b2 −1 2(1− σ1)

E ′1
E ′2

b2
(

1− σ1
1− σ2

)
E ′1
E ′2

(3− 2σ1)b
6 b4 −(1− 2σ1)b

2 1 (1− 2σ2)

(
1− σ1
1− σ2

)
E ′1
E ′2
b2

(
1− σ1
1− σ2

)
E ′1
E ′2


(2.66)

and
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Y =



M1

N1

P1

Q1

P2

Q2


, S = −1

4
b4T



0

0

1

1(
1− σ1
1− σ2

)
E ′1
E ′2(

1− σ1
1− σ2

)
E ′1
E ′2


. (2.67)

The exact solution of Systems A and B can be derived using Mathematica or
a similar computer language. However, the results are not sufficiently simple to be
useful for physical interpretation. A perturbation solution of Systems A and B will
be performed in Section 3, the physical interpretation of which is more apparent.

3 Perturbation solution for the stress

Since the radius of the cylindrical excavation is r = b we take for the perturbation
parameter

ε =
b− a
b

(3.1)

and therefore
a = b(1− ε) . (3.2)

If the radius of the tunnel is b = 2 m and the thickness of the TSL is 10 mm then
ε = 0.005. We therefore need to derive the solution only to first order in ε.

The limit ε = 0 corresponds to no lining. The first order correction describes
the effect of the lining on the mine wall.

3.1 System A

Consider first the system (2.62) and the perturbation expansion

B1 = B10 + εB11 + O(ε2) , (3.3)

C1 = C10 + εC11 + O(ε2) , (3.4)

C2 = C20 + εC21 + O(ε2) , (3.5)

as ε→ O. System A at zero order in ε can be expressed in matrix form as
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E0X0 = F0 (3.6)

where

E0 =


2b2 1 0

2b2 1 −1

2(1− 2σ1)b
2 −1

(
1− σ1
1− σ2

)
E ′1
E ′2

 (3.7)

and

X0 =


B10

C10

C20

 , F0 = F , (3.8)

where F is given by (2.64). The system (3.6) can be solved either manually or by
using Mathematica or a similar computer language. It is found that

B10 =
1

4

E ′1
E ′2

T , C10 = −1

2

E ′1
E ′2

b2T , C20 = −1

2
b2T . (3.9)

The first order in ε equations in System A, written in matrix form, are

E0X1 = F1 , (3.10)

where E0 is given by (3.7) and

X1 =


B11

C11

C21

 , F1 =


E ′1
E ′2

b2T

0

0

 . (3.11)

The solution of (3.10) is readily obtained because the inverse of the same matrix E0

as for the zero order system (3.6) has to be calculated. The solution is

B11 =
1

4

[
1

1− σ1
− 1

(1− σ2)
E ′1
E ′2

]
E ′1
E ′2

T , (3.12)

C11 =
1

2

[
1− 2σ1
1− σ1

− 1

(1− σ2)
E ′1
E ′2

]
E ′1
E ′2

b2T , (3.13)

C21 =
E ′1
E ′2

b2T . (3.14)
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3.2 System B

Consider next System B and the perturbation expansion

M1 = M10 + εM11 + O(ε2) , (3.15)

N1 = N10 + εN11 + O(ε2) , (3.16)

P1 = P10 + ε P11 + O(ε2) , (3.17)

Q1 = Q10 + εQ11 + O(ε2) , (3.18)

P2 = P20 + ε P21 + O(ε2) , (3.19)

Q2 = Q20 + εQ21 + O(ε2) , (3.20)

as ε→ 0. System B at zero order in ε in matrix form is

R0Y0 = S0 (3.21)

where

R0 =



0 b4 2b2 3 0 0

3bb b4 −b2 −3 0 0

0 b4 2b2 3 −2b2 −3

3λb6 λb4 −λb2 −3λ b2 3

2σ1b
6 b4 −2(1− σ1)b2 −1 2(1− σ1)

E ′1
E ′2

b2
(

1− σ1
1− σ2

)
E ′1
E ′2

(3− 2σ1)b
6 b4 −(1− 2σ1)b

2 1 (1− 2σ2)

(
1− σ1
1− σ2

)
E ′1
E ′2
b2

(
1− σ1
1− σ2

)
E ′1
E ′2


(3.22)

and
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Y0 =



M10

N10

P10

Q10

P20

Q20


, S0 = S , (3.23)

where the matrix S is given by (2.67). The zero order in ε solution is

M10 = 0 , N10 = −1

4

E ′1
E ′2

T , P10 =
1

2

E ′1
E ′2

b2T ,

Q10 = −1

4

E ′1
E ′2

b4T , P20 =
1

2
b2T , Q20 = −1

4
b2T .

(3.24)

The solution (3.24) to zero order in ε is independent of the weak bounding factor
λ. To uderstand why this is the case we observe that λ occurs only in the boundary
condition (2.10). But at zero order in ε, from (3.2), a = b and the boundary
condition (2.8) becomes

τ
(1)
rθ (b, θ) = 0 . (3.25)

Hence the boundary condition (2.10) reduces to

τ
(2)
rθ (b, θ) = 0 , (3.26)

which does not depend on λ. The parameter λ is therefore absent from System B
at zero order in ε and its solution does not depend on the strength of the bonding
at the interface.

System B for first order in ε in matrix form is

R0Y1 = S1 , (3.27)

where R0 is given by (3.22) and

Y1 =



M11

N11

P11

Q11

P21

Q21


, S1 =

E ′1
E ′2

b4T



1

−2

0

0

0

0


. (3.28)
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The inverse of the same matrix R0 as in the zero order system (3.21) has to be
evaluated. The first order in ε solution is

M11 =− 1

12

[
3

1− σ1
− (2λ+ 1)

(1− σ2)
E ′1
E ′2

]
E ′1
E ′2

T

b2
, (3.29)

N11 =
1

2

[
σ1

1− σ1
−
(
(2λ− 1)σ2 + 1− λ

)
1− σ2

E ′1
E ′2

]
E ′1
E ′2

T , (3.30)

P11 =−1

4

[
1

1− σ1
+

(2λ− 1)(3− 4σ2)

1− σ2
E ′1
E ′2

]
E ′1
E ′2

b2T , (3.31)

Q11 =
1

2

[
1 +

(
5λ− 2− 3(2λ− 1)σ2

)
3(1− σ2)

E ′1
E ′2

]
E ′1
E ′2

b4T , (3.32)

P21 =−(2λ− 1)
E ′1
E ′2

b2T , (3.33)

Q21 =
1

3
(4λ− 1)

E ′1
E ′2

b4T . (3.34)

The weak bonding factor λ first occurs in the components of the stress tensor
in the liner and rock mass at order ε and only in the coefficients of cos 2θ and
sin 2θ. The components of the stress tensor in the liner and rock mass depend on
the Young’s modulus only through the ratio E ′1/E

′
2 of the reduced elastic moduli.

They also depend explicitly on the Poisson ratio in the liner and rock mass.

3.3 Stress in the liner and rock mass to first order in ε

We first investigate the contribution made by the TSL to the transfer of stress from
the rock mass and the effect of weak bonding on this stress transfer. From (2.33)
the hoop stress in the rock mass correct to order ε is

τ
(2)
θθ (r, θ) =

1

2
T

[
1 +

(
1− 2ε

E ′1
E ′2

)(
b

r

)2

−

(
1 + 3

(
1− 4

3
ε (4λ− 1)

E ′1
E ′2

)(
b

r

)4
)

cos 2θ

]
. (3.35)

The hoop stress in the rock mass at the interface r = b is
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τ
(2)
θθ (b, θ) = T

[
1− ε E

′
1

E ′2
− 2

(
1− ε(4λ− 1)

E ′1
E ′2

)
cos 2θ

]
. (3.36)

The presence of the cylindrical excavation in the rock mass increases the hoop
stress in the rock when the rock mass is subjected to tension. This is described by
the stress concentration factor, K, which is defined as the ratio of the maximum
tensile stress in the rock mass with the tunnel to the tensile stress in the rock mass
without the tunnel. The hoop stress (3.35) is a maximum at r = b and θ = π

2
:

τ
(2)
θθ

(
b,
π

2

)
= 3T

[
1− 8

3

(
λ− 1

8

)
E ′1
E ′2

ε

]
. (3.37)

The tensile stress in the absence of the tunnel is T . Thus

K = 3

[
1− 8

3

(
λ− 1

8

)
E ′1
E ′2

ε

]
. (3.38)

When the liner is absent, ε = 0 and the stress concentration factor is 3. If 1
8
< λ ≤ 1

the effect of the liner is to decrease the stress concentration in the rock mass due to
the transfer of stress from the rock to the liner. The weaker the bonding the less the
reduction of the stress in the rock. If 0 < λ < 1

8
such that the bonding is very weak

the presence of the liner increases the stress concentration in the rock. However,
since ε for a thin spray-on liner is very small (ε ' 0.005) the stress concentration
factor (3.37) shows that a TSL does not make a significant contribution to the
reduction of stress in the rock mass.

Consider now the tensile stress in the liner which is given by (2.29). Because the
tensile stress in the liner is important we write it out in full, correct to first order in
ε, to show its dependence on λ and on the elastic constants:

τ
(1)
θθ (r, θ) =

E ′1
E ′2

T

[
1

2
+ εB∗11 +

(
1

2
+ εC∗11

)(
b

r

)2

+

(
εM∗

11

(r
b

)2
− 1

2
+ εN∗11 +

(
−3

2
+ εQ∗11

)(
b

r

)4
)

cos 2θ

]
,(3.39)

where

B∗11 =
1

2

[
1

1− σ1
− 1

(1− σ2)
E ′1
E ′2

]
, (3.40)

C∗11 =−1

2

[
1− 2σ1
1− σ1

+
1

(1− σ2)
E ′1
E ′2

]
, (3.41)

M∗
11 =−

[
3

1− σ1
− (12λ+ 1)

(1− σ2)
E ′1
E ′2

]
, (3.42)
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N∗11 =
σ1

1− σ1
−
(
(2λ− 1)σ2 + 1− λ

)
(1− σ2)

E ′1
E ′2

, (3.43)

Q∗11 = 3

[
1 +

(
5λ− 2− 3(2λ− 1)σ2

)
3(1− σ2)

E ′1
E ′2

]
. (3.44)

The weak bonding parameter λ enters only at order ε in the coefficient of cos 2θ and
does not contribute significantly to the tension in the liner. The tensile stress in the
liner at the interface r = b correct to order ε is

τ
(1)
θθ (b, θ) =

E ′1
E ′2

T

[
1 + ε

(
σ1

1− σ1
− 1

(1− σ1)
E ′1
E ′2

)

−2

(
1 + ε

(
σ1

1− σ1
−
(
4λ− 1 + 2(1− 2λ)σ2

)
1− σ2

E ′1
E ′2

))
cos 2θ

]
.(3.45)

and at θ =
π

2
,

τ
(1)
θθ

(
b,
π

2

)
= 3

E ′1
E ′2

T

[
1 + ε

(
σ1

1− σ1
−
(
8λ− 1 + 4(1− 2λ)σ2

)
3(1− σ2)

E ′1
E ′2

)]
. (3.46)

A significant difference between (3.45) and (3.46) in the liner at the interface and
(3.36) and (3.37) in the rock at the interface is the factor E ′1/E

′
2 at zero order in the

liner. To prevent the build up of tensile stress in the liner the ratio E ′1/E
′
2 should be

kept small by selecting a liner with suitably small reduced elastic modulus E ′1. The
zero order term in (3.45) and (3.46) does not depend on the weak bonding factor λ
or on the thickness of the liner, the effects of which are first order in ε.

Finally, consider the shear stress at the interface r = b. Using (2.28) it can be
verified that the shear stress in the liner at the interface correct to order ε is

τ
(1)
rθ (b, θ) = −4ε

E ′1
E ′2

T sin 2θ , (3.47)

which is independent of the weak bonding factor λ that will enter at order ε2. Unlike
the tensile stress, the shear stress is proportional to the thickness of the liner through
ε and therefore is small in a TSL. From the boundary condition (2.10) the shear
stress in the rock mass at the interface is

τ
(2)
rθ (b, θ) = λτ

(1)
rθ (b, θ) = −4 ε λ

E ′1
E ′2

T sin 2θ . (3.48)
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The liner can fail under tension, not under shear, because the shear stress in
the liner is small, of order ε. Slip or debonding between the liner and the rock will
reduce tension in the liner and prevent liner failure under tension.

The shear and tensile stress in the liner and rock mass depend on the ratio E ′1/E
′
2

of the reduced elastic moduli. Typical numerical values for the elastic constants are

E1 = 6GPa , σ1 = 0.3 , E2 = 40GPa , σ2 = 0.25 , (3.49)

which gives for the ratio

E ′1
E ′2
' 0.15 . (3.50)

The effect of the liner on the stress distribution in the rock mass surrounding
the tunnel is small and is little influenced by the boundary conditions. This is very
different from the effect of penetration of liner material into cracks and fractures in
the rock mass [1, 2]. The effect of the tunnel on the liner tensile stress is large, at
zero order, through the ratio E ′1/E

′
2 of the reduced elastic moduli. This can cause

the liner to detach.

4 Local rock support due to a TSL

Here we are concerned with the effectiveness of TSLs for restraining the movement
of ‘loose’ rocks on a wall surface, which may correspond to a tunnel wall. In the
tunnel case considered in Sections 2 and 3 the liner may rupture under tension or
may detach from the surface of the rock due to excessive shear across the adhesive
layer. Such a separation of liner from the rock face will occur at isolated locations
on the tunnel wall where the adhesion is weak (perhaps due to loose sand) or due
to local protuberances.

Whilst our focus is on ‘local restraint’ issues it must be kept in mind that if
displaced rocks are key components for the structure then global collapse may occur,
so such geometric issues necessarily play a role. Depending on the stability of the
global structure and the local geological and mining forcing one can decide to either
strongly restrict the movement of loose rocks relative to the wall thus strongly
constraining the geometry, or weakly constrain the geometry. In this context:

• Shotcrete can provide strong ‘structural’ support. This strong resistance to
movement however will result in large stresses if there is significant external
forcing, and if rupture occurs then it is likely to be dramatic because of the
large elastic energy build up in the shotcrete before rupture.

• At the other end of the spectrum we have steel meshes (with supporting bolts)
which simply capture falling rocks; there is almost no strong structural sup-
port.

• The TSL liners are ‘elastically weak’ but ‘lightly’ constrain small movement
(unless there is liner penetration). If however the liner detaches then rocks
may be ‘basketed’ by the liner, but less weakly than if mesh is used.
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Displacement (mm)
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load-displacement

welded wire 
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mesh 
reinforced shotcrete
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reinforced
shotcrete

Figure 3: Load verses displacement (pull tests) curves for various wall support pro-
cedures, including a generic TSL liner. An ideal load-displacement is also indicated.
Taken from Tannant [4].

Figure 3 displays laboratory results for pull tests for various support types
(Tannant [4]). Note that steel reinforced shotcrete strongly resists movement until
rupture. If weaker mesh reinforcement is used with shotcrete then again there is
strong resistance to small movements but greater displacements can occur without
rupture. A bolted wire mesh provides no resistance to wall movement until the
mesh is fully stretched. Ideally, as displayed, one would like the liner to strongly
resist movement but again allow larger displacements to occur without ‘collapse’, as
displayed in the ideal load-displacement curve. In practice one might expect a load-
displacement response for TSLs of the ‘generic type’ shown. Here the liner provides
moderate resistance to loading up until a limit Lmax is reached, and then responds
to additional loading by stretching a distance dmax before collapsing; the TSL thus
accomplishes the desirable attributes of both shotcrete and bolted wire mesh. In a
particular mining and geological context Lmax and dmax may be prescribed so as to
ensure structural stability, and the aim is to identify or design the TSL that realises
these values. The required elastic and adhesive parameters to achieve this behaviour
may be obtained by changing the thickness of the liner or adjusting the chemical
composition of the liner or adhesive1.

1It should be noted that loading-displacement curves of this non-linear type are typical of rubber
materials, so that it may be possible to simply design the TSL liner without consideration of the
adhesive, but it seems more likely that adjustment of the adhesive properties will be necessary.
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4.1 Support mechanisms and failure

We will now examine various typical situations involving the use of liner support in
mining. This work closely follows the work of Tannant [4].

Figure 4 shows a loose rock that remains in place on the roof of the tunnel
because of liner constraint. This situation would arise if the rock split off from the
wall after the liner was applied; in such a case there would be no penetration of the
liner into wall cracks. Note in this case the loose rock is partially supported by the
competent wall and partially supported by the liner. If the rock is sufficiently large
the liner will not tightly restrain it and it will break loose.

One possible scenario is that the liner will fail either through shear rupture or
through diagonal tensile rupture, as depicted in Figure 5 Right. Tannant noted that
crude estimates of the size of rock that can be supported can be simply obtained
by determining the force required to pull the loose bonded rock from the competent
rock which is given approximately by

F = σl wl L (4.1)

competent rock

pivot

W

P F

L

Figure 4: The rock tilts and remains in place due to the liner

loose
rock
loose
rock

loose
rock

Mg Mg

competant
wall
competant
wall

competant
wall

Figure 5: Failure through liner rupture. Left: The supported rock. Right: A close
up of the situation near the rupture point (circle). Two liner rupture modes are
possible: shear failure and tensile failure.
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where σl (N/m) is the shear strength of the TSL and wl is its thickness and L the
length of the crack separating the rock from the surface of the wall. Using Tannan-
t’s data for a wl = 4 mm polyurethane liner (Table 1), and using a rock density of
2600 kg/m3, this gives a prediction that a square rock of size 1 × 1 m and depth
0.5 m would be supported by a 4 mm TSL liner before rupture. Similar results
are obtained if tensile rupture occurs. These results are much larger than what
one would expect which suggests that the liner itself is unlikely to fail by this type
of rupture2. Laboratory and field observations suggest this is the case (Tannant [4]).

TABLE 1: Polyurethane liner properties

Young’s modulus E = 69− 690 MPa

Tensile strength σl= 8 MPa

Adhesive strength σb= 1 MPa

Maximum strain e = 10−1

Bond width wb= 5 mm

Liner thickness wl=4 mm

The implication of the above is that liner rupture is very unlikely to be the failure
mechanism; adhesive detachment from the wall is likely to occur before stress levels
in the liner are sufficient to cause rupture, which is consistent with the results for
polyurethane presented in Table 1; the bonding strength of the liner is much less
than the shear and tensile strength T .

B

T sin θT

θ
H/ tan(θ)

Mg

H

h

—-2R—

Figure 6: Cylindrical rock support geometry. Note that along the line of attachment
(see circle) we have B = T sin θ.

The liner acts as a membrane which exerts a tension force on the suspended
rock. Under the action of an increasing expulsion force (in this case an increasing
rock weight) liner/rock adhesive loss will first occur at some location around the
perimeter of the wall crack separating the rock from the wall, and the liner will tear

2It seems more likely that the linear would tear.
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away from the crack and wall face while the normal component of the tensile force
in the liner membrane exceeds the bonding force B (N/m), as shown in Figure 6.
This process will cease when the forces are in balance so that

B = T sin θ, (4.2)

where
B = σbwb , T = σlwl, (4.3)

and wb ≈ wl is the bond width. This result determines the equilibrium angle of
attachment θ in terms of the bonding strength and local liner tension. During the
detachment process the suspended loose rock will descend and rotate until the rock
is fully supported with the net force and torque acting on the rock in balance, and
with the attachment condition (4.3) being satisfied around the contact boundary.
The rock may be partially supported by the wall or may be fully supported as
depicted in Figure 7.

Figure 6 displays a symmetric case in which a cylindrical rock of height h and
radius R detaches from the wall. In this case the force balance for the rock requires

2π

[
R +

H

tan θ

]
B = Mg, (4.4)

and the tension in the liner is uniform around the (cylindrical) line of attachment.
Torque balance is assured by symmetry.

Assuming the liner remains bonded to the exposed face of the rock (the most
likely scenario) the extension of the liner (change in length of the liner per unit
initial length) is, from Figure 6, given by

e =
1

cos θ
− 1 , (4.5)

and assuming a Young’s Law behaviour we have

T = Ele = El

[
1

cos θ
− 1

]
, (4.6)

where
E` = w`E ; (4.7)

here E is Young’s modulus for the liner material3.
Equations (4.2) to (4.7) determine the equilibrium state (θ,H, T ) for the cylin-

drical rock with its supporting liner as a function of the known mass of the rock and
the bonding strength of the liner. The liner attachment angle θ can be eliminated
from the system in favour of the tension T using (4.2) to give:

T = El

[
T√

T 2 −B2
− 1

]
, (4.8)

3σl = E(δl/l)
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tunnel wall

liner
T

T

Mg

T

tunnel wall

liner

Mg

Figure 7: Attached and unattached rock held in place by a liner.

2πB

[
R +H

√
T 2 −B2

B

]
= Mg. (4.9)

It is useful to use the total bonding force around the perimeter of the crack
(2πRB) as a force scale and also scale lengths according to the rock radius:

T = BT ′, Mg = (2πRB)W ′ , H = RH ′, (4.10)

in terms of which the equations reduce to the dimensionless form:

T ′ =
El
B

[
T ′√
T ′2 − 1

− 1

]
, (4.11)

H ′ =
W ′ − 1√
T ′2 − 1

. (4.12)

Young’s Law, equation (4.11), can be solved exactly for T ′(El/B) using an algebra-
ic package (the expression is complicated) and then the scaled rock displacement
H ′(W ′) follows from (4.12).

One feature that comes out of the scaling is that significant movements (com-
pared with the radius of the rock) will occur for rock masses of order (2πRB)/g,
which is clear from equation (4.10), so that a doubling of the bonding strength will
double the rock weight that can be supported. For W ′ > 1 the scaled displacement
increases in direct proportion to (W ′− 1) with the proportionality factor dependent
on the Young’s modulus. This happens until the liner breaks. The generic behaviour
is thus as shown in Figure 8 where the bonding strength and maximum stretch will
vary with liner type and thickness, as will the Young’s modulus and so the slope
of the load displacement curve. For the polyurethane liner case described in Table
1 it follows from (4.2) that the liner breaks when θ = arcsin(1/8), which gives a
maximum angle of 7 degrees before liner breakage. This curve should be compared
with that shown earlier in Figure 3. The stress versus strain relationship for plastics
is not quite linear; typically the material becomes stiffer at higher displacements,
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Figure 8: Displacement verses loading for the liner supported cylindrical rock.

so that Figure 3 would be experimentally determined but the principles presented
above hold.

In the above work we envisaged a situation in which the tendency was for the
rock to move perpendicularly to the wall face. In the tunnel situation, shear and
hoop stresses can be set up in the surface of the wall, so that the liner may be
subjected to longitudinal extension in the plane of the wall. Now if there is a crack
in the wall face then the liner stretched across that crack will be locally strongly
stretched and rupture is very likely. This occurs for example when paint covers a
crack that then expands; the paint cracks.

In all the above work we assumed no penetration of the liner into cracks. It
should be remembered that any such penetration will have a major effect on the
outcome.

5 Conclusions

We first investigated the effectiveness of non-penetrating TSLs in a lined tunnel
subjected to a tensile perturbation due either to a seismic event or a mining dis-
turbance. It was found that the shear and tensile stress in the liner and rock mass
depend on the ratio E ′1/E

′
2 of the reduced elastic moduli. The effect of the liner on

the stress distribution in the rock mass surrounding the tunnel is small, of order of
magnitude of the thickness of the TSL and is little influenced by the weak bonding
factor λ. This is very different from the significant effect that penetration of liner
material into fractures and cracks has on the stress distribution of the surrounding
rock. The effect of the excavation on the liner tensile stress is large and occurs at
zero order in ε through the factor E ′1/E

′
2. To prevent build-up of tensile stress in

the liner E ′1/E
′
2 should be kept small by choosing a liner with suitably small reduced
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elastic modulus E ′1. The zero order term in the tensile stress in the liner does not
depend on the weak bonding factor λ. It was found that the shear stress at the
interface is small, the order of magnitude of the thickness of the liner and to this
order it is independent of the weak bonding factor λ. The liner could therefore fail
under tension but not under shear because the shear stress in the liner is only of
order ε. In practice debonding between the liner and the rock will reduce tension
in the liner and prevent liner failure under tension. The results show that in the
liner tensile stress is more important than shear stress in supporting rocks and that
debonding does not significantly affect the stress.

We next investigated local rock support. It was shown that support of loose
rock movements is better achieved using a TSL with small Young’s modulus but
high rupture tensile strength. A doubling of the bonding strength of the liner to the
rock will double the weight of rock that can be supported by the liner. Adhesive
detachment from the tunnel wall is likely to occur before stress levels in the liner
are sufficient to cause rupture because bonding strength is less than the shear and
tensile strength of the liner.
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